Vol. 126
Latest Volume
All Volumes
PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2022-10-31
Cantenna Adjustment with 1x6 Woodpile Shaped EBG for Application in Goat Manure Moisture Content and Bulk Density Monitoring
By
Progress In Electromagnetics Research C, Vol. 126, 49-62, 2022
Abstract
This study aimed to investigate the structural design of a cantenna with Woodpile shaped electromagnetic band gap (EBG) for gain enhancement and to increase the efficiency of signal transmission for measuring the moisture content and the bulk density of goat manure, which can help farmers reduce the cost of buying chemical fertilizers. From the test of operating frequency ranges from 2 to 3 GHz, it was found that the frequency band that responds to humidity the best is 2.60 GHz, increasing the efficiency of the gain with the 6x6 cm2 Woodpile shaped EBG. It was arranged in transverse electric (TE) and placed parallel to the end of the cantenna. This allows the gain to be increased to 9.31 dBi, in which the cantenna structure without EBG has the gain of 7.32 dBi. When the cantenna is used to determine the moisture content (MC) and bulk density, the transmission distance between the cantenna Tx/Rx is 3 cm with an average power rating of 0.0001-0.5 mW. This cantenna can measure humidity in the unit of wet basis (wb.) as low as 0.14% wb., at an average power of 0.5 mW.
Citation
Watcharaphon Naktong, Sawitree Prapakarn, Natthapong Prapakarn, and Natchayathorn Wattikornsirikul, "Cantenna Adjustment with 1x6 Woodpile Shaped EBG for Application in Goat Manure Moisture Content and Bulk Density Monitoring," Progress In Electromagnetics Research C, Vol. 126, 49-62, 2022.
doi:10.2528/PIERC22082801
References

1. Zhang, J., Y. Ying, and X. Yao, "Effects of turning frequency on the nutrients of Camellia oleifera shell co-compost with goat dung and evaluation of co-compost maturity," Plos One, Vol. 14, No. 9, e0222841, 2019.
doi:10.1371/journal.pone.0222841

2. Situmeang, Y. P., I. D. N. Sudita, and M. Suarta, "Manure utilization from cows, goats, and chickens as compost, biochar, and poschar in increasing the red chili yield," International Journal on Advanced Science, Engineering and Information Technology, Vol. 9, No. 6, 2088-2095, 2019.
doi:10.18517/ijaseit.9.6.10345

3. Noreen, N. A. Y. A. R. A., N. A. D. I. A. Ramzan, Z. A. H. I. D. A. Perveen, and S. A. L. E. E. M. Shahzad, "A comparative study of cow dung compost, goat pellets, poultry waste manure and plant debris for thermophilic, thermotolerant and mesophilic microflora with some new reports from Pakistan," Pak. J. Bot, Vol. 51, No. 3, 1155-1159, 2019.

4. Ani, K. A., C. M. Agu, C. Esonye, and M. C. Menkiti, "Investigations on the characterizations, optimization and effectiveness of goat manure compost in crude oil biodegradation," Current Research in Green and Sustainable Chemistry, Vol. 4, 100120, 2021.
doi:10.1016/j.crgsc.2021.100120

5. Ren, X., Z.Wang, M. Zhao, J. Xie, Z. Zhang, F. Yang, and Y. Ding, "Role of selenite on the nitrogen conservation and greenhouse gases mitigation during the goat manure composting process," Science of the Total Environment, 155799, 2022.
doi:10.1016/j.scitotenv.2022.155799

6. Meyer, D., P. Price, and B. Karle, "Solid manure moisture content determination-microwave method for exported solid manures," California Dairy Quality Assurance Program, 2008.

7. Pankaj, P., P. Kaur, and K. Singh Mann, "Frequency, temperature and moisture dependent dielectric properties of chicken manure relevant to radio frequency/microwave drying," Poultry Science Journal, Vol. 9, No. 2, 187-195, 2021.

8. Luo, T., Y. Wang, and P. Pandey, "The removal of moisture and antibiotic resistance genes in dairy manure by microwave treatment," Environmental Science and Pollution Research, Vol. 28, No. 6, 6675-6683, 2021.
doi:10.1007/s11356-020-10986-8

9. Kampeephat, S., P. Krachodnok, and R. Wongsan, "Efficiency improvement for conventional rectangular horn antenna by using EBG technique," International Journal of Electrical, Computer, Energetic, Electronic and Communication Engineering, Vol. 8, No. 7, 1038-1043, 2014.

10. Wongsan, R. and P. Khamsalee, "Hybrid metamaterial structure for asymmetric horn of secondary radar system," 2019 7th International Electrical Engineering Congress (iEECON), 1-4, IEEE, March 2019.

11. Karami-Raviz, A. and S. E. Hosseini, "A novel horn antenna with a bed of nails with high gain and low side lobes," 2020 28th Iranian Conference on Electrical Engineering (ICEE), 1-4, IEEE, August 2020..

12. Sifat, S. M., S. I. Shams, and A. A. Kishk, "Ka-band integrated multilayer pyramidal horn antenna excited by substrate integrated gap waveguide," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 6, 4842-4847, 2021.
doi:10.1109/TAP.2021.3137483

13. Yoshida, K., N. Kashiyama, M. Kanemoto, S. Umemoto, H. Nishikawa, A. Tanaka, and T. Douseki, "2.45-GHz wireless power transmitter with dual-polarization-switching cantenna for LED accessories," 2019 IEEE Wireless Power Transfer Conference (WPTC), 371-374, IEEE, June 2019.
doi:10.1109/WPTC45513.2019.9055595

14. Wongsan, R., P. Krachodnok, S. Kampeephat, and P. Kamphikul, "Gain enhancement for conventional circular horn antenna by using EBG technique," 2015 12th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technolog (ECTI-CON), 1-4, IEEE, June 2015.

15. Wongsan, R., P. Duangtang, and P. Mesawad, "Dimension reduction of conical horn antennas by adding structure of metamaterial," 2015 IEEE Asia Pacific Conference on Wireless and Mobile (APWiMob), 214-217, IEEE, August 2015.
doi:10.1109/APWiMob.2015.7374957

16. Duangtang, P., P. Mesawad, and R.Wongsan, "Creating a gain enhancement technique for a conical horn antenna by adding a wire medium structure at the aperture," Journal of Electromagnetic Engineering and Science, Vol. 16, No. 2, 134-142, 2016.
doi:10.5515/JKIEES.2016.16.2.134

17. Xu, Y. X. and Y. B. Tian, "Optimal design of conical horn antenna based on GP model with coarse mesh," Iranian Journal of Science and Technology, Transactions of Electrical Engineering, Vol. 43, No. 4, 717-724, 2019.
doi:10.1007/s40998-019-00209-3

18. Ridho, S., C. Apriono, F. Y. Zulkifli, and E. T. Rahardjo, "Design of corrugated horn antenna with wire medium addition as parabolic feeder for Ku-band very small aperture terminal (VSAT) application," 2020 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET), 163-166, IEEE, November 2020.

19. Dhandhukia, H. and D. Pujara, "Fabry-Perot horn antenna with improved gain," 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, 1973-1974, IEEE, July 2020.

20. Baldazzi, E., A. Al-Rawi, R. Cicchetti, A. B. Smolders, O. Testa, C. D. J. van Coevorden Moreno, and D. Caratelli, "A high-gain dielectric resonator antenna with plastic-based conical horn for millimeter-wave applications," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 6, 949-953, 2020.
doi:10.1109/LAWP.2020.2984565

21. Ni, C., J. Jiang, W. J. Wu, L. Zhao, and Z. Fan, "Decoupling method based on complementary split ring resonator (CSRR) for two cone shipborne antennas," IEEE Access, Vol. 9, 167845-167854, 2021.
doi:10.1109/ACCESS.2021.3135577

22. Yahaya, N., Z. Abbas, M. A. Ismail, and B. M. Ali, "Determination of moisture content of hevea rubber latex using a microstrip patch antenna," PIERS Proceedings, 1290-1293, Kuala Lumpur, Malaysia, March 27-30, 2012.

23. Jain, S., P. K. Mishra, V. V. Thakare, and J. Mishra, "Microstrip moisture sensor based on microstrip patch antenna," Progress In Electromagnetics Research M, Vol. 76, 177-185, 2018.
doi:10.2528/PIERM18092602

24. Jain, S., "Early detection of salt and sugar by microstrip moisture sensor based on direct transmission method," Wireless Personal Communications, Vol. 122, No. 1, 593-601, 2022.
doi:10.1007/s11277-021-08914-1

25. Liu, J., S. Qiu, and Z. Wei, "Real-time measurement of moisture content of paddy rice based on microstrip microwave sensor assisted by machine learning strategies," Chemosensors, Vol. 10, No. 10, 376, 2022.
doi:10.3390/chemosensors10100376

26. Li, Z., Y. Wang, and X. Qu, "Design of high gain broadband antenna based on Fabry-Perot resonator," Proceedings of the 3rd International Conference on Vision, Image and Signal Processing, 1-5, August 2019.

27. Swain, R., A. Chatterjee, S. Nanda, and R. K. Mishra, "A linear-to-circular polarization conversion metasurface based wideband aperture coupled antenna," Journal of Electrical Engineering & Technology, Vol. 15, No. 3, 1293-1299, 2020.
doi:10.1007/s42835-020-00402-z

28. Srinivas, G. and D. Vakula, "High gain and wide band antenna based on FSS and RIS configuration," Radioengineering, Vol. 30, No. 1, 96-103, 2021.
doi:10.13164/re.2021.0096

29. Li, Y. L. and K. M. Luk, "Dual circular polarizations generated by self-polarizing Fabry-Pérot cavity antenna with loaded polarizer," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 12, 8890-8895, 2021.
doi:10.1109/TAP.2021.3090850

30. Muñoz Jaramillo, F. P., "Departamento de eléctrica, electrόnica y telecomunicaciones,", Doctoral dissertation, Universidad De Las Fuerzas Armadas, 2020.

31. Santosa, S. P. and A. Nurdianto, "Rancang bangun antena kaleng di frekuensi 2.4 GHz untuk memperkuat sinyal WIFI," Seminar Nasional Teknologi, Vol. 1, No. 1, 574-580, May 2018.

32. Pahrurrozi, P., C. M. O. Muvianto, and S. Ariessaputra, "Desain modifikasi cantenna untuk optimasi feed antena grid 2.4 GHz," Jurnal Bakti Nusa, Vol. 1, 49-57, 2020.

33. Bakhtiari, A., "Investigation of enhanced gain miniaturized patch antenna using near zero index metamaterial structure characteristics," IETE Journal of Research, Vol. 68, No. 2, 1312-1319, 2022.
doi:10.1080/03772063.2019.1644973

34. Fhafhiem, N., P. Krachodnok, and R. Wongsan, "Curved strip dipole antenna on EBG reflector plane for RFID applications," WSEAS Transactions on Communications, Vol. 9, No. 6, 374-383, 2010.

35. Naktong, W. and N. Wattikornsirikul, "Dipole antenna with 18 × 5 square electromagnetic band gap for applications used in monitoring children trapped in cars," Progress In Electromagnetics Research M, Vol. 112, 163-176, 2022.
doi:10.2528/PIERM22053003

36. Balanis, C. A., Antenna Theory and Design, John Willey & Sons, NY, USA, 1997.

37. Horwitz, W. and G. W. Latimer, Official Methods of Analysis, 18th Edition, AOAC International, USA, 2005.

38. ISO 3944 "Fertilizers --- Determination of bulk density (loose),", International Standard, 1992.