Vol. 173
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2022-04-20
A Physics-Based HIE-FDTD Method for Electromagnetic Modeling of Multi-Band Frequency Selective Surface (Invited)
By
Progress In Electromagnetics Research, Vol. 173, 129-140, 2022
Abstract
A physics-based hybrid implicit-explicit finite-difference time domain (HIE-FDTD) method is developed for electromagnetic modeling of multi-passband frequency selective surfaces (FSSs). Using this self-developed HIE-FDTD simulator, several dual- and tri-passband FSSs are designed and further fabricated. The measurement results are in good agreement with the simulation ones, which prove high accuracy of the self-developed HIE-FDTD algorithm. In addition, the resonant frequencies of the designed FSSs can be effectively adjusted by changing their geometric parameters. This work provides electromagnetic guides of structure and parameter selections for designing multi-passband FSS.
Citation
Hao Xie, Tielun Hu, Zhili Wang, Yanbin Yang, Xiaohui Hu, Wei Qi, and Hong Liu, "A Physics-Based HIE-FDTD Method for Electromagnetic Modeling of Multi-Band Frequency Selective Surface (Invited)," Progress In Electromagnetics Research, Vol. 173, 129-140, 2022.
doi:10.2528/PIER22012103
References

1. Song, X. Y., Z. H. Yan, T. L. Zhang, C. Yang, and R. N. Lian, "Triband frequency-selective surface as subreflector in Ku-, K-, and Ka-bands," IEEE Antennas Wireless Propag. Lett., Vol. 15, 1869-1872, 2016.
doi:10.1109/LAWP.2016.2542185

2. Salehi, M. and N. Behdad, "A second-order dual X-/Ka-band frequency selective surface," IEEE Microw. Wireless Compon., Vol. 18, No. 12, 785-787, 2008.
doi:10.1109/LMWC.2008.2007698

3. Deng, R. Y., F. Yang, S. H. Xu, and M. K. Li, "An FSS-backed 20/30-GHz dual-band circularly polarized reflect array with suppressed mutual coupling and enhanced performance," IEEE Trans. Antennas Propag., Vol. 65, No. 2, 926-931, 2017.
doi:10.1109/TAP.2016.2633159

4. Deng, R. Y., S. H. Xu, F. Yang, and M. K. Li, "An FSS-backed Ku/Ka quad-band reflectarray antenna for satellite communications," IEEE Trans. Antennas Propag., Vol. 66, No. 8, 4353-4358, 2018.
doi:10.1109/TAP.2018.2835725

5. Ma, Y. H., W. W. Wu, Y. Yuan, W. T. Yuan, and N. C. Yuan, "A high-selective frequency selective surface with hybrid unit cells," IEEE Access, Vol. 6, 75259-75267, 2018.
doi:10.1109/ACCESS.2018.2878941

6. Zhu, E., Z. Wei, X. Xu, and W.-Y. Yin, "Fourier subspace-based deep learning method for inverse design of frequency selective surface," IEEE Trans. Antennas Propag., IEEE, 2021.

7. Wu, T. K., "Four-band frequency selective surface with double square loop patch elements," IEEE Trans. Antennas Propag., Vol. 42, No. 12, 1659-1663, 1994.
doi:10.1109/8.362804

8. Huang, J., T. K. Wu, and S. H. Lee, "Tri-band frequency selective surface with circular ring elements," IEEE Trans. Antennas Propag., Vol. 42, No. 2, 166-175, 1994.
doi:10.1109/8.277210

9. Hu, X. D., X. L. Zhou, L. S. Wu, L. Zhou, and W. Y. Yin, "A miniaturized dual-band frequency selective surface (FSS) with closed loop and its complementary pattern," IEEE Antennas Wireless Propag. Lett., Vol. 8, 1374-1377, 2009.

10. Wang, D. S., W. Q. Che, Y. M. Chang, K. S. Chin, and Y. L. Chow, "A low-profile frequency selective surface with controllable tri-band characteristics," IEEE Antennas Wireless Propag. Lett., Vol. 12, 468-471, 2013.
doi:10.1109/LAWP.2013.2254459

11. Hill, R. A. and B. A. Munk, "The effect of perturbing a frequency selective surface and its relation to the design of a dual-band surface," IEEE Trans. Antennas Propag., Vol. 44, No. 3, 368-374, 1996.
doi:10.1109/8.486306

12. Huang, M. J., M. Y. Lv, J. Huang, and Z. Wu, "A new type of combined element multiband frequency selective surface," IEEE Trans. Antennas Propag., Vol. 57, No. 6, 1793-1803, 2009.
doi:10.1109/TAP.2009.2019910

13. Chiu, C. N. and W. Y. Wang, "A dual-frequency miniaturized-element FSS with closely located resonances," IEEE Antennas Wireless Propag. Lett., Vol. 12, 163-165, 2013.
doi:10.1109/LAWP.2013.2245092

14. Romeu, J. and Y. Rahmat-Smaii, "Fractal FSS: A novel dual-band frequency selective surface," IEEE Trans. Antennas Propag., Vol. 48, No. 7, 1097-1105, 2000.
doi:10.1109/8.876329

15. Bossard, J. A., D. H. Werner, T. S. Mayer, J. A. Smith, and Y. U. Tang, "The design and fabrication of planar multiband metallodielectric frequency selective surfaces for infrared applications," IEEE Trans. Antennas Propag., Vol. 54, No. 4, 1265-1276, 2006.
doi:10.1109/TAP.2006.872583

16. Li, B. and Z. Shen, "Dual-band bandpass frequency selective structures with arbitrary band ratios," IEEE Trans. Antennas Propag., Vol. 62, No. 11, 5504-5512, 2014.
doi:10.1109/TAP.2014.2349526

17. Miittra, R., C. H. Chan, and T. Cwik, "Techniques for analyzing frequency selective surfaces - A review," Proc. IEEE, Vol. 76, No. 12, 1593-1615, 1988.
doi:10.1109/5.16352

18. Harms, P., R. Mittra, and W. Ko, "Implementation of the periodic boundary condition in the finite-difference time-domain algorithm for FSS structures," IEEE Trans. Antennas Propag., Vol. 42, No. 9, 1317-1324, 1994.
doi:10.1109/8.318653

19. Chen, J. and J. Wang, "A three-dimensional semi-implicit FDTD scheme for calculation of shielding effectiveness of enclosure with thin slots," IEEE Trans. Electromag. Compat., Vol. 49, No. 2, 354-360, 2007.
doi:10.1109/TEMC.2007.893329

20. Duan, H., W. Fang, W.-Y. Yin, E. Li, and W. Chen, "Computational investigation of nanoscale semiconductor devices and optoelectronic devices from the electromagnetics and quantum perspectives by the finite difference time domain method," Progress In Electromagnetics Research, Vol. 170, 63-78, 2021.
doi:10.2528/PIER20122201

21. Tan, E. L., "Fundamental implicit FDTD schemes for computational electromagnetics and educational mobile apps," Progress In Electromagnetics Research, Vol. 168, 39-59, 2020.
doi:10.2528/PIER20061002

22. Tukmakova, A., I. Tkhorzhevskiy, A. Sedinin, A. Asach, A. Novotelnova, N. Kablukova, P. Demchenko, A. Zaitse, D. Zykov, and M. Khodzitsky, "FEM simulation of frequency-selective surface based on thermoelectric Bi-Sb thin lms for THz detection," Photonics, Vol. 8, No. 4, 2021.
doi:10.3390/photonics8040119

23. Arango, J. D., Y. A. Vélez, V. H. Aristizabal, F. J. Vélez, J. A. Gómez, J. C. Quijano, and J. Herrera-Ramirez, "Numerical study using finite element method for the thermal response of fiber specklegram sensors with changes in the length of the sensing zone," Computer Optics, Vol. 45, No. 4, 534-540, 2021.
doi:10.18287/2412-6179-CO-852

24. Wang, J. B., J. L. Wang, B. H. Zhou, and C. Gao, "An efficient 3-D HIE-FDTD method with weaker stability condition," IEEE Trans. Antennas Propag., Vol. 64, No. 3, 998-1004, 2016.
doi:10.1109/TAP.2015.2513100

25. Hu, T. L., W. Y. Yin, Y. Z. Chen, X. F. Bao, and Z. G. Zhao, "Parallel computing graphene frequency selective surface (GFSS) with large finite array using HIE-FDTD method on high performance computer," Proce. IEEE ISAPE, 1-4, 2018.

26. Unno, M., S. Aono, and H. Asai, "GPU-based massively parallel 3-D HIE-FDTD method for high-speed electromagnetic field simulation," IEEE Trans. Electromag. Compat., Vol. 54, No. 4, 912-921, 2012.
doi:10.1109/TEMC.2011.2173938

27. Huang, B. K., G. Wang, and Y. S. Jiang, "A hybrid implicit explicit FDTD scheme with weakly conditional stability," Microw. Opt. Technol. Lett., Vol. 39, No. 2, 97-101, 2003.
doi:10.1002/mop.11138

28. Turner, G. M. and C. Christodoulou, "FDTD analysis of phased array antennas," IEEE Trans. Antennas Propag., Vol. 47, No. 4, 661-667, 1999.
doi:10.1109/8.768805

29. Guo, C., H. J. Sun, and X. Lu, "Dualband frequency selective surface with double-four-legged loaded slots elements," 2008 International Conference on Microwave and Millimeter Wave Technology, 2008.

30. Rahmati, B. and H. R. Hassani, "Multiband metallic frequency selective surface with wide range of band ratio," IEEE Trans. Antennas Propag., Vol. 63, No. 8, 3747-3753, 2015.
doi:10.1109/TAP.2015.2438340