Vol. 37
Latest Volume
All Volumes
PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2013-02-05
Design Filters Using Tunable E-Shaped Dual-Mode Resonators for Lower-Ultra-Wideband and Upper-Ultra-Wideband Applications
By
Progress In Electromagnetics Research C, Vol. 37, 145-157, 2013
Abstract
Two ultra-wideband (UWB) microstrip bandpass filters (BPFs) are proposed by using tunable E-shaped dual-mode microstrip Stepped-Impedance Resonator (SIR). For the lower band filter measurement results show there is a passband of 3.1 GHz to 5.2 GHz and its 3 dB fractional bandwidth is 51%. The UWB upper band filter may be obtained by tuning E-shaped SIR. The measurement results show there is a passband of 6 GHz to 10.6 GHz and its 3 dB fractional bandwidth is 55%. Compared with the similar investigation using the cascade of electromagnetic band gap (EBG)-embedded multiplemode resonator (MMR) and fork resonator, the proposed approach has some advantages, such as easier adjustment of bandwidths, better passband performances and smaller size etc.
Citation
Yan-Liang Wu, Cheng Liao, Xiang-Zheng Xiong, and Xuan-Ming Zhong, "Design Filters Using Tunable E-Shaped Dual-Mode Resonators for Lower-Ultra-Wideband and Upper-Ultra-Wideband Applications," Progress In Electromagnetics Research C, Vol. 37, 145-157, 2013.
doi:10.2528/PIERC12111808
References

1. Federal Communications Commission "Revision of Part 15 of the commission's rules regarding ultra-wideband transmission systems,", Tech. Rep. ET-Docket 98-153, FCC 02-48, FCC, 2002.
doi:10.2528/PIER12011701

2. Gao, M.-J., L.-S. Wu, and J. F. Mao, "Compact notched ultra-wideband bandpass filter with improved out-of-band performance using quasi electromagnetic bandgap structure," Progress In Electromagnetics Research, Vol. 125, 137-150, 2012.
doi:10.2528/PIER11120103

3. Kuo, J.-T., C.-Y. Fan, and S.-C. Tang, "Dual-wideband bandpass filters with extended stopband based on coupled-line and coupled three-line resonators," Progress In Electromagnetics Research, Vol. 124, 1-15, 2012.
doi:10.2528/PIER11122010

4. Chen, W.-Y., M.-H. Weng, S.-J. Chang, H. Kuan, and Y.-H. Su, "A new tri-band bandpass filter for GSM, WiMAX and ultra-wideband responses by using asymmetric stepped impedance resonators," Progress In Electromagnetics Research, Vol. 124, , 365-381, 2012.
doi:10.1163/156939311795254037

5. Xu, J., B. Li, H. Wang, C. Miao, and W. Wu, "Compact UWB bandpass filter with multiple ultra narrow notched bands," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 7, 987-998, 2011.
doi:10.1163/156939311794362902

6. Liu, C.-Y., T. Jiang, and Y.-S. Li, "A novel UWB filter with notch-band characteristic using radial-UIR/SIR loaded stub resonators," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 2, 233-245, 2011.
doi:10.1163/156939311798147079

7. Yang, G., W. Kang, and H.Wang, "An UWB bandpass filter based on single ring resonator and shorted stubs loaded without coupled feed lines," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 16, 2159-2167, 2011.

8. Ma, D.-C., Z.-Y. Xiao, L.-L. Xiang, X.-H. Wu, C.-Y. Huang, and X. Kou, "Compact dual-band bandpass filter using folded SIR with two stubs for WLAN," Progress In Electromagnetics Research, Vol. 117, 357-364, 2011.

9. Liao, X.-J., H.-C. Yang, and N. Han, "A switchable bandpass filter using pin diodes on/off characteristics for WLAN application," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 10, 1402-1411, 2011.
doi:10.1080/09205071.2012.710351

10. Mashhadi, M. and N. Komjani, "Design of novel dual-band bandpass filter with multi-spurious suppression for WLAN application," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 7, 851-862, 2012.

11. IEEE.15 Working Group for Wireless Personal Area Networks "Detailed DS-UWB simulation results,", Tech. Rep., IEEE 802.15, 802, 2004.
doi:10.1109/TMTT.2012.2189123

12. Wang, X.-G., Y.-H. Cho, and S.-W. Yun, "A tunable combline bandpass filter loaded with series resonator," IEEE Trans. Microw. Theory Tech., Vol. 60, No. 6, 1569-1576, 1569.
doi:10.1109/TMTT.2009.2013313

13. Huang, S.-Y. and Y.-H. Lee, "A compact E-shaped patterned ground structure and its applications to tunable bandstop resonator," IEEE Trans. Microw. Theory Tech.,, Vol. 57, No. 3, 657-666.
doi:10.1109/TMTT.2007.904045

14. Wang, X.-H., B.-Z. Wang, H.-L. Zhang, and K.-J. Chen, "A tunable bandstop resonator based on a compact slotted ground structure," IEEE Trans. Microw. Theory Tech., Vol. 55, No. 9, 1912-1917, Sep. 2007.
doi:10.2528/PIER10100808

15. Chen, J.-X., J. Shi, Z.-H. Bao, and Q. Xue, "Tunable and switchable bandpass filters using slot-line resonators," Progress In Electromagnetics Research, Vol. 111, 25-41, 2011.
doi:10.1109/LMWC.2007.897788

16. Wong, S. W. and L. Zhu, "EBG-embedded multiple-mode resonator for UWB bandpass filter with improved upper-stopband performance," IEEE Microwave Wireless Comp. Lett., Vol. 17, No. 6, 421-423, 2007.
doi:10.2528/PIER07082302

17. Chen, H. and Y.-X. Zhang, "A novel and compact UWB bandpass filter using microstrip fork-form resonators," Progress In Electromagnetics Research, Vol. 77, 273-280, 2007.
doi:10.1049/iet-map.2010.0470

18. Habiba, H. U., K. Malathi, M. H. Masood, and R. Kunnath, "Tunable electromagnetic band gap-embedded multimode resonators for ultra-wideband dual band, lower-ultra-wideband and upper-ultra-wideband applications," IET Microw. Antennas Propag., Vol. 5, No. 10, 1182-1187, Jul. 2011.
doi:10.1109/LMWC.2006.890335

19. Shaman, H. and J.-S. Hong, "A novel ultra-wideband (UWB) bandpass filter (BPF) with pairs of transmission zeroes," IEEE Microwave Wireless Comp. Lett., Vol. 17, No. 2, 121-123, 2007.
doi:10.1109/TMTT.2005.850442

20. Liao, C.-K. and C.-Y. Chang, "Design of microstrip quadruplet filters with source-load coupling," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 7, 2302-2308, Jul. 2005.
doi:10.2528/PIER11102502

21. Ho, M.-H. and P.-F. Chen, "Suspended substrate stripline bandpass filters with source-load coupling structure using lumped and full-wave mixed approach," Progress In Electromagnetics Research, Vol. 122, 519-535, 2012.
doi:10.1109/TMTT.2007.912204

22. Mondal, P. and M. K. Mandal, "Design of dual-band bandpass filters using stub-loaded open-loop resonators," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 1, 150-155, Jan. 2008.
doi:10.2528/PIER11072003

23. Wu, Y. and Y. Liu, "A coupled-line band-stop filter with three section transmission-line stubs and wide upper pass-band performance," Progress In Electromagnetics Research, Vol. 119, 407-421, 2011.
doi:10.1163/156939312798954892

24. Huang, X.-G., Q.-Y. Feng, and Q.-Y. Xiang, "High selectivity broadband bandpass filter using stub-loaded quadruple-mode resonator," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 1, 34-43, 2012.
doi:10.1109/TMTT.2006.888580

25. Liao, C.-K., P.-L. Chi, and C.-Y. Chang, "Microstrip realization of generalized Chebyshev filters with box-like coupling schemes," IEEE Trans. Microw. Theory Tech., Vol. 55, No. 1, 147-153, Jan. 2007.
doi:10.1109/TMTT.2011.2176506

26. Kuo, Y.-T. and C.-Y. Chang, "Analytical design of two-mode dual-band filters using E-shaped resonators," IEEE Trans. Microw. Theory Tech., Vol. 60, No. 2, 250-260, Feb. 2012.

27. Wei, C.-L., B.-F. Jia, Z.-J. Zhu, and M.-C. Tang, "Design of different selectivity dual-mode filters with E-shaped resonator," Progress In Electromagnetics Research, Vol. 116, 517-532, 2011.
doi:10.1007/978-3-662-04325-7

28. akimoto, M. and S. Yamashita, Microwave Resonators and Filters for Wireless Communications-theory and Design, Springer-Verlag, Berlin, Germany, 2001.
doi:10.1163/156939312798954856

29. Liu, S.-K. and F.-Z. Zheng, "A new compact tri-band bandpass filter using step impedance resonators with open stubs," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 1, 130-139, 2012.
doi:10.1109/LMWC.2012.2187884

30. Chen, W.-Y., M.-H. Weng, and S.-J. Chang, "A new tri-band bandpass filter based on stub-loaded step-impedance resonator," IEEE Microwave Wireless Comp. Lett., Vol. 22, No. 4, 179-181, Apr. 2012.
doi:10.1109/LMWC.2012.2185784

31. Wu, H.-W., Y.-F. Chen, and Y.-W. Chen, "Multi-layered dual-band bandpass filter using stub-loaded stepped-impedance and uniform-impedance resonators," IEEE Microwave Wireless Comp. Lett., Vol. 22, No. 3, 114-116, Mar. 2012.
doi:10.2528/PIER11080105

32. Chen, C.-H., C.-S. Shih, T.-S. Horng, and S.-M. Wu, "Very miniature dual-band and dual-mode bandpass filter designs on an integrated passive device chip," Progress In Electromagnetics Research, Vol. 119, 461-476, 2011.
doi:10.2528/PIER11102904

33. Zhang, Z.-G., Y. Fan, Y.-J. Cheng, and Y.-H. Zhang, "A compact multilayer dual-mode substrate integrated circular cavity (SICC) filter for X-band application," Progress In Electromagnetics Research, Vol. 122, 453-465, 2012.
doi:10.2528/PIER12020704

34. Zhang, Z.-G., Y. Fan, Y.-J. Cheng, and Y.-H. Zhang, "A novel multilayer dual-mode substrate integrated waveguide complementary filter with circular and elliptic cavities (SICC and SIEC)," Progress In Electromagnetics Research, Vol. 127, 173-188, 2012.
doi:10.1109/TMTT.2003.809180

35. Thomas, J. B, "Cross-coupling in coaxial cavity filters --- A tutorial overview," IEEE Trans. Microw. Theory Tech., Vol. 51, No. 4, 1368-1376, Apr. 2003.