Vol. 92
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2019-05-20
A Dual-Band Planar Quasi Yagi-Uda Antenna with Optimized Gain for LTE Applications
By
Progress In Electromagnetics Research C, Vol. 92, 239-250, 2019
Abstract
A printed Yagi-Uda antenna with two closely-spaced driven dipole elements and truncated ground plane is presented for dual-band operation. It is designed on a low-cost FR4 substrate with a dielectric constant 4.6, loss tangent of 0.02, and thickness of 1.6 mm. The dipole, operating in the lower band (centered at 1.8 GHz), is elliptical-bow-tiein shape with rounded edges, whereas a J-shaped dipole enables its operation in the upper band (centered at 2.6 GHz). A trapezoid-shaped director is employed to achieve maximum gain over the required frequency bands. Measurements indicate that the antenna operates from 1.71 to 1.9 GHz and from 2.5 to 2.7 GHz with |S11| < -10 dB. The behavior of the proposed antenna has been investigated by studying different parameters to achieve the maximum gains of 6 and 7.7 dB in LTE band 3 and band 7, respectively, with optimal size. It is found that the experimental results of the final packaged antenna agree with the simulated ones in terms of reflection coefficients, gain, and radiation patterns.
Citation
Manzoor Elahi, Irfanullah, Rizwan Khan, Azremi Abdullah Al-Hadi, Saeeda Usman, and Ping Jack Soh, "A Dual-Band Planar Quasi Yagi-Uda Antenna with Optimized Gain for LTE Applications," Progress In Electromagnetics Research C, Vol. 92, 239-250, 2019.
doi:10.2528/PIERC19022401
References

1. Holma, H., A. Toskala, K. Ranta-Aho, and J. Pirskanen, "High-speed packet access evolution in 3GPP release 7 [Topics in radio communications]," IEEE Communications Magazine, Vol. 45, No. 12, 29-35, 2007.
doi:10.1109/MCOM.2007.4395362

2. Mun, B., F. J. Harackiewicz, B. Kim, H. Wi, J. Lee, M. J. Park, and B. Lee, "New configuration of handset MIMO antenna for LTE 700 band applications," International Journal of Antennas and Propagation, Vol. 2013, 6 pages, 2013.

3. Dadgarpour, A., B. Zarghooni, B. S. Virdee, and T. A. Denidni, "Millimeter-wave high-gain SIW end-fire bow-tie antenna," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 5, 2337-2342, 2015.
doi:10.1109/TAP.2015.2406916

4. Sun, M., X. Qing, and Z. N. Chen, "60-GHz end-fire fan-like antennas with wide beamwidth," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 4, 1616-1622, 2013.
doi:10.1109/TAP.2012.2237153

5. Pazin, L. and Y. Leviatan, "A compact 60-GHz tapered slot antenna printed on LCP substrate for WPAN applications," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 272-275, 2010.
doi:10.1109/LAWP.2010.2046612

6. Shao, J., G. Fang, Y. Ji, K. Tan, and H. Yin, "A novel compact tapered-slot antenna for GPR applications," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 972-975, 2013.
doi:10.1109/LAWP.2013.2276403

7. Nikolic, N. and A. R. Weily, "Compact E-band planar quasi-Yagi antenna with folded dipole driver," IET Microwaves, Antennas & Propagation, Vol. 4, No. 11, 1728-1734, 2010.
doi:10.1049/iet-map.2009.0531

8. Wu, J., Z. Zhao, Z. Nie, and Q. H. Liu, "Bandwidth enhancement of a planar printed quasi-Yagi antenna with size reduction," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 1, 463-467, 2014.
doi:10.1109/TAP.2013.2287286

9. Qin, P. Y., A. R. Weily, Y. J. Guo, T. S. Bird, and C. H. Liang, "Frequency reconfigurable quasi- Yagi folded dipole antenna," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 8, 2742-2747, 2010.
doi:10.1109/TAP.2010.2050455

10. Liu, J. and Q. Xue, "Microstrip magnetic dipole Yagi array antenna with endfire radiation and vertical polarization," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 3, 1140-1147, 2013.
doi:10.1109/TAP.2012.2230239

11. Cai, R.-N., S. Lin, G.-L. Huang, X.-Y. Zhang, X.-Q. Zhang, W.-B. Zhang, and J.-X. Wang, "Research on a novel Yagi-Uda antenna fed by balanced microstrip line," IEEE China-Japan Joint Microwave Conference Proceedings (CJMW), 1-4, 2011.

12. Zong, H., H. Gu, H. Li, B. Liu, G. Liu, and Q. Wu, "A novel high-gain quasi-Yagi antenna with a parabolic reflector," 2015 International Symposium IEEE Antennas and Propagation (ISAP), 1-3, 2015.

13. Farran, M., D. Modotto, S. Boscolo, A. Locatelli, A. D. Capobianco, M. Midrio, and V. Ferrari, "Microstrip-fed quasi-Yagi antennas for WLAN applications,", 384-387, 2014.

14. Kim, D. O. and C. Y. Kim, "Dual-band quasi-Yagi antenna with split ring resonator directors," Electronics Letters, Vol. 48, No. 14, 809-810, 2012.
doi:10.1049/el.2012.1567

15. Steyn, J. M., J. W. Odendaal, and J. Joubert, "Double dipole antenna for dual-band wireless local area networks applications," Microwave and Optical Technology Letters, Vol. 51, No. 9, 2034-2038, 2009.
doi:10.1002/mop.24540

16. Jehangir, S. S. and M. S. Sharawi, "A miniaturized dual wide-band loop excited quasi-yagi antenna using a defected ground structure," IEEE 2016 16th Mediterranean Microwave Symposium (MMS), 1-3, 2016.

17. Zhang, Y. and Z. Li, "A dual-band planar quasi-Yagi antenna with double-dipole driver," IEEE 6th International Symposium on Microwave, Antenna, Propagation, and EMC Technologies (MAPE), 123-125, 2015.

18. Cheong, P., K. Wu, W. W. Choi, and K. W. Tam, "Yagi-Uda antenna for multiband radar applications," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 1065-1068, 2014.
doi:10.1109/LAWP.2014.2328991

19. Ding, Y., Y. C. Jiao, P. Fei, B. Li, and Q. T. Zhang, "Design of a multiband quasi-Yagi-type antenna with CPW-to-CPS transition," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 1120-1123, 2011.
doi:10.1109/LAWP.2011.2170950

20. Khan, O. M., Z. U. Islam, Q. U. Islam, and F. A. Bhatti, "Multiband high-gain printed Yagi array using square spiral ring metamaterial structures for S-band applications," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 1100-1103, 2014.
doi:10.1109/LAWP.2014.2329309

21. Wu, S. J., C. H. Kang, K. H. Chen, and J. H. Tarng, "A multiband quasi-Yagi type antenna," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 2, 593-596, 2010.
doi:10.1109/TAP.2010.2041522

22. Qian, Y. and T. Itoh, "A broadband uniplanar microstrip-to-CPS transition," 1997 Asia-Pacific Microwave Conference Proceedings, APMC’97, 609-612, 1997.
doi:10.1109/APMC.1997.654615

23. Han, K. H., B. Lacroix, J. Papapolymerou, and M. Swaminathan, "New microstrip-to-CPS transition for millimeter-wave application," 2011 IEEE 61st Electronic Components and Technology Conference (ECTC), 1052-1057, 2011.
doi:10.1109/ECTC.2011.5898640

24. Rizzi, P. A., Microwave Engineering: Passive Circuits, Prentice Hall, 1988.

25. Mongia, R. K., J. Hong, P. Bhartia, and I. J. Bahl, RF and Microwave Coupled-line Circuits, Artech House, 2007.

26. Eldek, A. A., "Design of double dipole antenna with enhanced usable bandwidth for wideband phased array applications," Progress In Electromagnetics Research, Vol. 59, 1-15, 2006.
doi:10.2528/PIER06012001

27. Ta, S. X., J. J. Han, H. Choo, and I. Park, "A wideband double dipole quasi-Yagi antenna using a microstrip-slotline transition feed," IEEE International Workshop on Antenna Technology (iWAT), 84-87, 2012.
doi:10.1109/IWAT.2012.6178404

28. Chang, D. C., C. B. Chang, and J. C. Liu, "Modified planar quasi-Yagi antenna for WLAN dualband operations," Microwave and Optical Technology Letters, Vol. 46, No. 5, 443-446, 2005.
doi:10.1002/mop.21012

29. Berge, L. A., M. T. Reich, and B. D. Braaten, "A compact dual-band bow-tie slot antenna for 900-MHz and 2400-MHz ISM bands," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 1385-1388, 2011.
doi:10.1109/LAWP.2011.2177954

30. Zhu, L. and K. Wu, "Field-extracted lumped-element models of coplanar stripline circuits and discontinuities for accurate radiofrequency design and optimization," IEEE Transactions on Microwave Theory and Techniques, Vol. 50, No. 4, 1207-1215, 2002.
doi:10.1109/22.993426

31. Jehangir, S. S. and M. S. Sharawi, "A miniaturized dual UWB quasi-Yagi based MIMO antenna system using a defected ground structure," 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 399-400, Boston, MA, 2018.