Vol. 77
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2017-08-15
Endfire Antenna Based on Spoof Surface Plasmon Polaritons
By
Progress In Electromagnetics Research C, Vol. 77, 11-18, 2017
Abstract
We proposed an efficient method to radiate the spoof surface plasmon polaritons (sspps) to the endfire direction, which added two parasitic strips as directors in front of the dipole antenna fed by the sspps structure. The directors were used to enhance the endfire radiation due to its beam modified function. Both simulated and measured results suggest good performance of the proposed antenna in a narrow band from 6.5 to 6.9 GHz with about 7.5 dBi realized gain and a 5 dBi increase in the endfire direction at the center frequency of 6.8GHz reference to the unloaded structure. Also, the surface electric field distributions of the unloaded and loaded sspps antenna were studied to verify the gain enhancement in the endfire direction in physical perspective. Our work tends to have better performance than other related work, such as broader bandwidth and higher realized gain with even greatly simplified design process. The proposed sspps antenna has potential applications in planer integrated circuits and communication systems.
Citation
Dou Tian, Ran Xu, Wei Li, Zhuo Xu, and Anxue Zhang, "Endfire Antenna Based on Spoof Surface Plasmon Polaritons," Progress In Electromagnetics Research C, Vol. 77, 11-18, 2017.
doi:10.2528/PIERC17052305
References

1. Pendry, J. B., L. Martin-Moreno, and F. J. Garcia-Vidal, "Mimicking surface plasmons with structured surfaces," Science, Vol. 305, 847-848, Aug. 6, 2004.
doi:10.1126/science.1098999

2. Zhang, H. C., Q. Zhang, J. F. Liu, W. Tang, Y. Fan, and T. J. Cui, "Smaller-loss planar SPP transmission line than conventional microstrip in microwave frequencies," Sci. Rep., Vol. 6, 23396, Mar. 17, 2016.
doi:10.1038/srep23396

3. Zhang, H. C., T. J. Cui, Q. Zhang, Y. Fan, and X. Fu, "Breaking the challenge of signal integrity using time-domain spoof surface plasmon polaritons," ACS Photonics, Vol. 2, 1333-1340, 2015.
doi:10.1021/acsphotonics.5b00316

4. Gao, X., L. Zhou, Z. Liao, H. F. Ma, and T. J. Cui, "An ultra-wideband surface plasmonic filter in microwave frequency," Applied Physics Letters, Vol. 104, 191603, 2014.
doi:10.1063/1.4876962

5. Shen, X. and T. Jun Cui, "Planar plasmonic metamaterial on a thin film with nearly zero thickness," Applied Physics Letters, Vol. 102, 211909, 2013.
doi:10.1063/1.4808350

6. Xu, J., Z. Li, L. Liu, C. Chen, B. Xu, P. Ning, et al. "Low-pass plasmonic filter and its miniaturization based on spoof surface plasmon polaritons," Optics Communications, Vol. 372, 155-159, 2016.
doi:10.1016/j.optcom.2016.04.017

7. Liu, L., Z. Li, B. Xu, J. Xu, C. Chen, and C. Gu, "Fishbone-like high-efficiency low-pass plasmonic filter based on double-layered conformal surface plasmons," Plasmonics, 2016.

8. Zhang, Q., H. C. Zhang, H. Wu, and T. J. Cui, "A hybrid circuit for spoof surface plasmons and spatial waveguide modes to reach controllable band-pass filters," Sci. Rep., Vol. 5, 16531, Nov. 10, 2015.
doi:10.1038/srep16531

9. Liu, X., Y. Feng, B. Zhu, J. Zhao, and T. Jiang, "Backward spoof surface wave in plasmonic metamaterial of ultrathin metallic structure," Scientific Reports, Vol. 6, 20448, 02/04/online 2016.
doi:10.1038/srep20448

10. Liu, X., Y. Feng, K. Chen, B. Zhu, J. Zhao, and T. Jiang, "Planar surface plasmonic waveguide devices based on symmetric corrugated thin film structures," Optics Express, Vol. 22, 20107-20116, Aug. 25, 2014.
doi:10.1364/OE.22.020107

11. Xiao, B., J. Chen, and S. Kong, "Filters based on spoof surface plasmon polaritons composed of planar Mach-Zehnder interferometer," Journal of Modern Optics, Vol. 63, 1529-1532, 2016.
doi:10.1080/09500340.2016.1146805

12. Liu, L., Z. Li, C. Gu, P. Ning, B. Xu, Z. Niu, et al. "Multi-channel composite spoof surface plasmon polaritons propagating along periodically corrugated metallic thin films," Journal of Applied Physics, Vol. 116, 013501, 2014.
doi:10.1063/1.4886222

13. Xiao, B., S. Kong, J. Chen, and M. Gu, "A microwave power divider based on spoof surface plasmon polaritons," Optical and Quantum Electronics, Vol. 48, 2016.
doi:10.1007/s11082-016-0456-7

14. Yi, H., S. W. Qu, and X. Bai, "Antenna array excited by spoof planar plasmonic waveguide," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 1227-1230, 2014.
doi:10.1109/LAWP.2014.2332257

15. Yin, J., D. Bao, J. Ren, H. Zhang, B. Pan, Y. Fan, et al. "Endfire radiations of spoof surface plasmon polaritons," IEEE Antennas and Wireless Propagation Letters, 1-1, 2016.

16. Yin, J. Y., H. C. Zhang, Y. Fan, and T. J. Cui, "Direct radiations of surface plasmon polariton waves by gradient groove depth and flaring metal structure," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 865-868, 2016.
doi:10.1109/LAWP.2015.2477877

17. Yin, J. Y., J. Ren, Q. Zhang, H. C. Zhang, Y. Q. Liu, Y. B. Li, et al. "Frequency-controlled broadangle beam scanning of patch array fed by spoof surface plasmon polaritons," IEEE Transactions on Antennas and Propagation, Vol. 64, 5181-5189, 2016.
doi:10.1109/TAP.2016.2623663

18. Xu, J. J., J. Y. Yin, H. C. Zhang, and T. J. Cui, "Compact feeding network for array radiations of spoof surface plasmon polaritons," Sci. Rep., Vol. 6, 22692, Mar. 07, 2016.
doi:10.1038/srep22692

19. Xu, J. J., H. C. Zhang, Q. Zhang, and T. J. Cui, "Efficient conversion of surface-plasmon-like modes to spatial radiated modes," Applied Physics Letters, Vol. 106, 021102, 2015.
doi:10.1063/1.4905580

20. Bai, X., S.-W. Qu, and H. Yi, "Applications of spoof planar plasmonic waveguide to frequencyscanning circularly polarized patch array," Journal of Physics D: Applied Physics, Vol. 47, 325101, 2014.
doi:10.1088/0022-3727/47/32/325101