PIER C
 
Progress In Electromagnetics Research C
ISSN: 1937-8718
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 75 > pp. 203-217

A SCALABLE COMPACT WIDEBAND DUAL-POLARIZED PRINTED DIPOLE ANTENNA FOR BASE STATION APPLICATIONS

By C. Tang, H. Cao, and J. Ho

Full Article PDF (1,614 KB)

Abstract:
A novel compact wideband dual-polarized printed dipole antenna for base station application is presented. The proposed antenna is composed of four assembled substrates. Two pairs of identical arrow-shaped conductive lines on the tophat substrate form two orthogonal polarized dipoles. Two baluns connected with 50 Ω coaxial cables are integrated on another two vertical substrates to excite the dipoles. The other horizontal board at bottom provides grounding. A rectangular box-shaped reflector is also used to enhance its stability in radiation patterns over the operating frequencies. It achieves 22% size reduction from the conventional printed half-wavelength cross-dipole, and 43.2% impedance bandwidth (VSWR<2), while maintaining a stable radiation pattern with measured Cross-Polarization Degradation (XPD) better than -22dB at boresight and an average peak gain of 8.4 dBi for a 65° Azimuth Beamwidth base station application at 700/800/900 MHz bands. With the scalable miniature structure, it may also find itself suitable for side-by-side multiband Multi-Input Multi-Output (MIMO) or Large-Scale Antenna (LSA) 5G base station applications. A 4x4 array prototype of the LSA is also designed and fabricated, and it achieves 27.8% impedance bandwidth (VSWR<1.5) with well decorrelated element performance and array XPD better than -20 dB across as large as 30° tilting range.

Citation:
C. Tang, H. Cao, and J. Ho, "A Scalable Compact Wideband Dual-Polarized Printed Dipole Antenna for Base Station Applications," Progress In Electromagnetics Research C, Vol. 75, 203-217, 2017.
doi:10.2528/PIERC17051502

References:
1. Lindmark, B. and M. Nillson, "On the available diversity gain from different dual-polarized antennas," IEEE Journal on Selected Areas in Communications, Vol. 19, No. 2, 287-294, Feb. 2001.
doi:10.1109/49.914506

2. Gou, Y., S. Yang, Q. Zhu, and Z. Nie, "A compact dual-polarized double E-shaped patch antenna with high isolation," IEEE Trans. Antennas Propag., Vol. 61, No. 8, 4349-4353, Aug. 2013.
doi:10.1109/TAP.2013.2262664

3. Bao, Z., Z. Nie, and X. Zong, "A novel broadband dual-polarization antenna utilizing strong mutual coupling," IEEE Trans. Antennas Propag., Vol. 62, No. 1, 450-454, Jan. 2014.
doi:10.1109/TAP.2013.2287010

4. Cui, Y.-H., R. Li, and H. Fu, "A broadband dual-polarized planar antenna for 2G/3G/LTE base stations," IEEE Trans. Antennas Propaga., Vol. 62, No. 9, 4836-4840, Sep. 2014.
doi:10.1109/TAP.2014.2330596

5. Chu, Q., D. Wen, and Y. Luo, "A broadband ±45◦ dual-polarized antenna with Y-shaped feeding lines," IEEE Trans. Antennas Propaga., Vol. 63, No. 2, 483-490, Feb. 2013.
doi:10.1109/TAP.2014.2381238

6. Li, R., T. Wu, B. Pan, K. Lim, J. Lasker, and M. Tentzeris, "Equivalent circuit analysis of a broadband printed dipole with adjusted integrated balun and an array for base station applications," IEEE Trans. Antennas Propaga., Vol. 57, 2180-2184, Jul. 2009.

7. Zhou, Z., S. Yang, and Z. Nie, "A novel broadband printed dipole antenna with low crosspolarization," IEEE Trans. Antennas Propaga., Vol. 55, 3091-3093, Nov. 2007.

8. He, Q., B. Wang, and J. He, "Wideband and dual-band design of a printed dipole antenna," IEEE Antennas Wireless Propag. Lett., Vol. 7, 1-4, 2008.

9. Liu, Y., H. Yi, F.-W. Wang, and S.-X. Gong, "A novel miniaturized broadband dual-polarized dipole antenna for base station," IEEE Antennas Wireless Propag. Lett., Vol. 12, 1335-1338, 2013.
doi:10.1109/LAWP.2013.2285373

10. Wu, J., Z. Zhao, Z. Nie, and Q. Liu, "A compact printed dipole antenna for wideband wireless applications," Progress In Electromagnetics Research C, Vol. 50, 95-102, 2014.
doi:10.2528/PIERC14040207

11. Gou, Y., S. Yang, J. Li, and Z. Nie, "A compact dual-polarized printed dipole antenna with high isolation for wideband base station applications," IEEE Trans. Antennas Propaga., Vol. 62, No. 8, 4392-4395, Aug. 2014.
doi:10.1109/TAP.2014.2327653

12. Huang, H., Y. Liu, and S. Gong, "A novel dual-broadband, dual-polarized antenna for 2G/3G/LTE base stations," IEEE Trans. Antennas Propaga., Vol. 64, No. 9, 4113-4118, 2016.
doi:10.1109/TAP.2016.2589966

13., , HFSS: High Frequency Structure Simulator Based on the Finite Element Method Ansoft Corp..

14. Tang, T. G., Q.M. Tieng, and M.W. Gunn, "Equivalent circuit of a dipole antenna using frequencyindependent lumped elements," IEEE Trans. Antennas Propaga., Vol. 41, No. 1, 100-103, Jan. 1993.
doi:10.1109/8.210122

15. D’Aquino, A., "Recommendation on base station antenna standards by NGMN alliance, N-PBASTA,", Version 10.0, Dec. 2016.

16. Janaswamy, R., "Effects of mutual coupling on the capacity of fixed length linear arrays," IEEE Antennas Wireless Propag. Lett., Vol. 1, 157-160, 2002.
doi:10.1109/LAWP.2002.807570

17. Oh, T., Y.-G. Lim, C.-B. Chae, and Y. Lee, "Dual-polarization slot antenna with high crosspolarization discrimination for indoor smallcell MIMO systems," IEEE Antennas Wireless Propag. Lett., Vol. 14, 374-377, 2015.
doi:10.1109/LAWP.2014.2364517

18. Zheng, W. C., L. Zhang, Q. X. Li, and Y. Leng, "Dual-band dual-polarized compact bowtie antenna array for anti-interference MIMO WLAN," IEEE Trans. Antennas Propag., Vol. 62, No. 1, 237-246, Jan. 2014.
doi:10.1109/TAP.2013.2287287

19. Donelli, M. and P. Febvre, "An inexpensive reconfigurable planar array for Wi-Fi applications," Progress In Electromagnetic Research C, Vol. 28, 71-81, 2012.
doi:10.2528/PIERC12012304

20. Votis, C., G. Tatsis, and P. Kostarakis, "Envelope correlation parameter measurements in a MIMO antenna array configuration," Int. J. Commun., Netw. Syst. Sci., Vol. 2, No. 4, 350-354, 2010.

21. Vaughan, R. G. and J. B. Andersen, "Antenna diversity in mobile communications," IEEE Transactions on Vehicular Technology, Vol. 36, 149-172, 1987.
doi:10.1109/T-VT.1987.24115

22. Arun, H., A. K. Sarma, M. Kanagasabai, S. Velan, C. Raviteja, and M. G. N. Alsath, "Deployment of modified serpentine structure for mutual coupling reduction in MIMO antennas," IEEE Antennas Wireless Propag. Lett., Vol. 13, 277-280, 2014.
doi:10.1109/LAWP.2014.2304541

23. Alsath, M. G. N., M. Kanagasabai, and B. Balasubramanian, "Implementation of slottedmeanderline resonators for isolation enhancement in microstrip patch antenna arrays," IEEE Antennas Wireless Propag. Lett., Vol. 12, 15-18, 2013.
doi:10.1109/LAWP.2012.2237156

24. Massa, A., M. Donelli, F. De Natale, S. Caorsi, and A. Lommi, "Planar antenna array control with genetic algorithms and adaptive array theory," IEEE Trans. Antennas Propag., Vol. 52, 2919-2924, Nov. 2004.

25. Donelli, M., S. Caorsi, F. De Natale, D. Franceschini, and A. Massa, "A versatile enhanced genetic algorithm for planar array design," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 11, 1533-1548, Nov. 2004.
doi:10.1163/1569393042954893


© Copyright 2010 EMW Publishing. All Rights Reserved