Vol. 76
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2017-07-26
A 6.6 GHz Quadrature Frequency Synthesizer with -78 Dbc Reference Spur for UWB Application
By
Progress In Electromagnetics Research C, Vol. 76, 63-73, 2017
Abstract
An integer-N quadrature frequency synthesizer for single-band UWB application was designed in 0.18 μm CMOS technology. A modified bottom-series quadrature voltage-controlled oscillator (QVCO) based on reconfigurable LC tank is employed to provide quadrature signals and cover a range from 6.48 GHz to 7.07 GHz. In order to suppress the reference spur levels, an improved charge-averaging charge pump and a highly linear phase-frequency detector (PFD) are used. From the carrier of 6.6 GHz, the measured reference spur is -78.2 dBc, and the measured phase noise is -115.4 dBc/Hz at 1MHz offset. The frequency synthesizer including buffers consumes a total power of 99 mW from a 1.8 V power supply. Chip size is 1.6 mm×0.9 mm.
Citation
Minghua Wang, Xiaosong Wang, Yu Liu, and Haiying Zhang, "A 6.6 GHz Quadrature Frequency Synthesizer with -78 Dbc Reference Spur for UWB Application," Progress In Electromagnetics Research C, Vol. 76, 63-73, 2017.
doi:10.2528/PIERC17032301
References

1. Liang, C., et al. "A 14-band frequency synthesizer for MB-OFDM UWB application," IEEE ISSCC Dig. Tech. Papers, 126-127, Feb. 2006.

2. Zhang, J., et al. "An improved charge-averaging charge pump for a fractional-N frequency synthesizer," Chinese Journal of Semiconductors, Vol. 29, No. 5, 913-916, 2008.

3. Wang, X., et al. "A wideband frequency synthesizer for a receiver application at multiple frequencies," Chinese Journal of Semiconductors, Vol. 31, No. 3, 035003-1-5, 2010.

4. Zhang, G., "Linear Phase Frequency Detector and Charge Pump for Phase-Locked Loop,", Chinese Patent, 200780044070.5, 2007-11-27.

5. Zhang, Y., et al. "A low-phase noise LC QVCO with bottom-series coupling and capacitor tapping," Proc. IEEE ISCAS, 1000-1003, May 2008.

6. Lanka, N., et al. "A sub-2.5 ns frequency-hopped quadrature frequency synthesizer in 0.13-μm technology," IEEE CICC, 57-60, Sep. 2009.

7. Li, Z., et al. "A programmable 2.4GHz CMOS multi-modulus frequency divider," Chinese Journal of Semiconductors, Vol. 29, No. 2, 224-228, 2008.

8. Vaucher, C. S., et al. "A family of low-power truly modular programmable dividers in standard 0.35 μm CMOS technology," IEEE Journal of Solid-State Circuits, Vol. 35, 1039-1045, 2000.
doi:10.1109/4.848214

9. Rogers, J., et al. "Integrated circuit design for high-speed frequency synthesis,", 2006.

10. Rategh, H. R., et al. "A CMOS frequency synthesizer with an injection-locked frequency divider for a 5-GHz wireless LAN receiver," IEEE Journal of Solid-State Circuits, Vol. 35, 780-787, 2000.
doi:10.1109/4.841507

11. Zheng, H. and C. L. Howard, "A 1.5V 3.1GHz–8 GHz CMOS synthesizer for 9-band MB-OFDM UWB transceivers," IEEE J. Solid-State Circuits, Vol. 42, No. 6, 1250-1260, Jun. 2008.
doi:10.1109/JSSC.2007.897135

12. Huang, Z.-D., et al. "A 1.5-V 3 ∼ 10 GHz 0.18-μm CMOS frequency synthesizer for MB-OFDM UWB applications," IEEE MTT-S International Microwave Symposium Digest, 229-232, Jun. 2008.

13. Lu, T.-Y. and W.-Z. Chen, "A 3–10 GHz, 14 bands CMOS frequency synthesizer with spurs reduction for MB-OFDM UWB system," IEEE Transactions on Very Large Scale Integration (VLSI) System, Vol. 20, 948-958, 2012.
doi:10.1109/TVLSI.2011.2134874

14. Li, W., et al. "Asingle inductor approach to the design of low-voltage CMOS MB-OFDM UWB frequency synthesizer," IEEE MTT-S International Microwave Symposium Digest, 1-3, 2012.

15. Lo, Y.-C., et al. "A 0.6 ps jitter 2–16 GHz 130 nm CMOS frequency synthesizer for broadband applications," IEEE International Symposium on Circuits and Systems (ISCAS), 3048-3051, 2015.

16. Kim, J., et al. "A 44GHz differentially tuned VCO with 4GHz tuning range in 0.12 μm SOI CMOS," IEEE International Digest of Technical Papers. Solid-State Circuits Conference, Vol. 1, 416-607, San Francisco, CA, 2005.

17. Ikeda, S., et al. "A 0.5V 5.96-GHz PLL with amplitude-regulated current-reuse VCO," IEEE Microwave and Wireless Components Letters, Vol. 27, No. 3, 302-304, Mar. 2017.
doi:10.1109/LMWC.2017.2662001

18. Chang, H.-Y., et al. "A low-jitter low-phase-noise 10-GHz sub-harmonically injection-locked PLL withself-aligned DLL in 65-nm CMOS technology," IEEE Trans. Microw. Theory Tech., Vol. 62, No. 3, 543-555, Mar. 2014.
doi:10.1109/TMTT.2014.2302747

19. El-Halwagy, W., et al. "A 28-GHz quadrature fractional-N frequency synthesizer for 5G transceivers with less than 100-fs jitter based on cascaded PLL architecture," IEEE Transactions on Microwave Theory and Techniques, Vol. 65, No. 2, 396-413, Feb. 2017.
doi:10.1109/TMTT.2016.2647698