Vol. 64
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2016-05-09
High Gain FSS Aperture Coupled Microstrip Patch Antenna
By
Progress In Electromagnetics Research C, Vol. 64, 21-31, 2016
Abstract
This paper presents a high-gain cavity resonant antenna (CRA), consisting of an FSS layer placed above an aperture coupled microstrip patch antenna (ACMPA). Geometry of the proposed FSS superstrate is highly reflective with |Γ>0.9|. Ray-tracing method has been employed for determining the resonant condition of the antenna. ACMPA operating at S-band is serving as a feeding source. The coupling aperture of the antenna is of novel design, and several figures of merit have been presented for the proposed coupling aperture. Analysis of CRA has been carried out with the design parameters of the CRA. HFSS-13 has been utilized as simulation tool. Measured results are in good agreement with the simulated ones.
Citation
Niaz Muhammad, Hassan Umair, Zain Ul Islam, Zar Khitab, Imran Rashid, and Farooq Ahmad Bhatti, "High Gain FSS Aperture Coupled Microstrip Patch Antenna," Progress In Electromagnetics Research C, Vol. 64, 21-31, 2016.
doi:10.2528/PIERC16022102
References

1. Von Trentini, G., "Partially reflecting sheet arrays," IRE Transactions on Antennas and Propagation, Vol. 4, No. 10, 666-671, 1956.
doi:10.1109/TAP.1956.1144455

2. Boutayeb, H., K. Mahdjoubi, A. C. Tarot, and T. A. Denidni, "Directivity of an antenna embedded inside a Fabry-Perot cavity: Analysis and design," Microwave and Optical Technology Letters, Vol. 48, No. 1, 12-17, 2006.
doi:10.1002/mop.21249

3. Weily, A. R., K. P. Esselle, B. C. Sanders, and T. S. Bird, "High-gain 1D EBG resonator antenna," Microwave and Optical Technology Letters, Vol. 47, No. 2, 107-114, 2005.
doi:10.1002/mop.21095

4. Lee, Y. J., J. Yeo, R. Mittra, and W. S. Park, "Application of electromagnetic band gap (EBG) superstrates with controllable defects for a class of patch antennas as spatial angular filters," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 1, 224-235, 2005.
doi:10.1109/TAP.2004.840521

5. Cheype, C., C. Serier, M. Thevenot, T. Monediere, A. Reineix, and B. Jecko, "An electromagnetic band gap resonator antenna,", Vol. 50, No. 9, 1285-1290, 2002.
doi:10.1109/TAP.2002.800699

6. Feresidis, A. P. and J. C. Vardaxoglou, "High gain planar antenna using optimized partially reflective surfaces," IEE Proceedings Microwave and Antennas Propagation, Vol. 148, No. 6, 345-350, 2001.
doi:10.1049/ip-map:20010828

7. Guerin, N., S. Enoch, G. Tayeb, P. Sabouroux, P. Vincent, and H. Legay, "A metallic Fabry-Perot directive antenna," A Metallic Fabry-Perot Directive Antenna, Vol. 54, No. 1, 220-224, 2006.

8. Ge, Y. and K. P. Esselle, "A resonant cavity antenna based on an optimized thin superstrate," Microwave and Optical Technology Letters, Vol. 50, No. 12, 3057-3059, 2008.
doi:10.1002/mop.23898

9. Feresidis, A. P. and J. C. Vardaxoglou, "A broadband high-gain resonant cavity antenna with single feed," Proceedings 1st EuCAP, 1-5, 2006.

10. Lee, D. H., Y. J. Lee, J. Yeo, R. Mittra, and W. S. Park, "Design of novel thin frequency selective surface superstrates for dual-band directivity enhancement," IEEE Antennas and Wireless Propagation Letters, Vol. 1, No. 1, 248-254, 2007.

11. Moustafa, L. and B. Jecko, "EBG structure with wide defect band for broadband cavity antenna applications," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 693-696, 2008.
doi:10.1109/LAWP.2008.2009076

12. Ge, Y., K. P. Esselle, and T. S. Bird, "The use of simple thin partially reflective surfaces with positive reflection phase gradients to design wideband, low-profile EBG resonator antennas," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 2, 743-750, 2012.
doi:10.1109/TAP.2011.2173113

13. Feresidis, A. P., G. Goussetis, S. Wang, and J. C. Vardaxoglou, "Artificial magnetic conductor surfaces and their application to low-profile high gain planar antennas," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 1, 209-215, 2005.
doi:10.1109/TAP.2004.840528

14. Foroozesh, A. and L. Shafai, "Investigation Into the effects of the patch-type FSS superstrate on the high-gain cavity resonance antenna design," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 2, 258-270, 2010.
doi:10.1109/TAP.2009.2037702

15. Pozar, D. M., "Microstrip antenna aperture-coupled to a microstripline," Electronics Letters, Vol. 21, No. 2, 49-50, 1985.
doi:10.1049/el:19850034

16. Bilgic, M. M. and K. Yegin, "Gain-bandwidth product for aperture-coupled antennas," IEEE Computational Electromagnetic Workshop, 21-22, 2013.

17. Bilgic, M. M. and K. Yegin, "High gain wideband aperture coupled microstrip antenna design based on gain-bandwidth product analysis," ACES Journal, Vol. 29, No. 8, 560-567, 2014.

18. Pirhadi, A., M. Hakkak, F. Keshmiri, and R. K. Baee, "Design of compact dual band high directive electromagnetic band gap (EBG) resonator antenna using artificial magnetic conductor," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 6, 1682-1690, 2007.
doi:10.1109/TAP.2007.898598

19. Munk, B. A., Frequency Selective Surfaces: Theory and Design, Wiley, New York, 2000.
doi:10.1002/0471723770

20. Pirhadi, A., H. Bahrami, and J. Nasri, "Wideband high directive aperture coupled microstrip antenna design by using a FSS superstrate layer," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 4, 2101-2104, 2012.
doi:10.1109/TAP.2012.2186230

21. Foroozesh, A. and L. Shafai, "2-D truncated periodic leaky-wave antennas with reactive impedance surface ground," IEEE Antennas and Propagation Society International Symposium, 15-18, 2006.
doi:10.1109/APS.2006.1710440