Vol. 167
Latest Volume
All Volumes
PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2020-03-19
Self-Dual Boundary Conditions in Electromagnetics
By
Progress In Electromagnetics Research, Vol. 167, 41-54, 2020
Abstract
Invariance in duality transformation, the self-dual property, has important applications in electromagnetic engineering. In the present paper, the problem of most general linear and local boundary conditions with self-dual property is studied. Expressing the boundary conditions in terms of a generalized impedance dyadic, the self-dual boundaries fall in two sets depending on symmetry or antisymmetry of the impedance dyadic. Previously known cases are found to appear as special cases of the general theory. Plane-wave reflection from boundaries defined by each of the two cases of self-dual conditions are analyzed and waves matched to the corresponding boundaries are determined. As a numerical example, reflection from a special case, the self-dual EH boundary, is computed for two planes of incidence.
Citation
Ismo Veikko Lindell, and Ari Sihvola, "Self-Dual Boundary Conditions in Electromagnetics," Progress In Electromagnetics Research, Vol. 167, 41-54, 2020.
doi:10.2528/PIER20031008
References

1. Lindell, I. V. and A. Sihvola, "Electromagnetic boundaries with PEC/PMC equivalence," Progress In Electromagnetics Research Letters, Vol. 61, 119-123, 2016.
doi:10.2528/PIERL16061805

2. Lindell, I. V. and A. Sihvola, "Electromagnetic wave reflection from boundaries defined by general linear and local conditions," IEEE Trans. Antennas Propag., Vol. 5, No. 9, 4656-4663, September 2017.
doi:10.1109/TAP.2017.2723913

3. Lindell, I. V. and A. Sihvola, Boundary Conditions in Electromagnetics, Wiley and IEEE Press, 2020.

4. Lindell, I. V. and A. Sihvola, "Perfect electromagnetic conductor," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 7, 861-869, 2005.
doi:10.1163/156939305775468741

5. Sihvola, A. and I. V. Lindell, "Perfect electromagnetic conductor medium," Ann. Phys., Vol. 17, 787-802, Berlin, September/October 2008.

6. Lindell, I. V., Methods for Electromagnetic Field Analysis, 2nd Ed., Wiley and IEEE Press, 1995.

7. Kildal, P.-S., "Definition of artificially soft and hard surfaces in electromagnetics," Electron. Lett., Vol. 24, 168-170, 1988.
doi:10.1049/el:19880112

8. Kildal, P.-S., "Artificially soft and hard surfaces in electromagnetics," IEEE Trans. Antennas Propag., Vol. 38, No. 10, 1537-1544, October 1990.
doi:10.1109/8.59765

9. Lindell, I. V., "Generalized soft-and-hard surface," IEEE Trans. Antennas Propag., Vol. 50, No. 7, 926-929, 2002.
doi:10.1109/TAP.2002.800698

10. Rumsey, V. H., "Some new forms of Huygens' principle," IRE Trans. Antennas Propag., Vol. 7, S103-S116, December 1959.
doi:10.1109/TAP.1959.1144766

11. Lindell, I. V. and A. Sihvola, "DB boundary as isotropic soft surface," Proc. Asian Pacific Microwave Conf., 4 pages, Hong Kong, December 2008.

12. Lindell, I. V. and A. Sihvola, "Electromagnetic boundary conditions defined in terms of normal field components," IEEE Trans. Antennas Propag., Vol. 58, No. 4, 1128-1135, April 2010.
doi:10.1109/TAP.2010.2041149

13. Lindell, I. V. and A. Sihvola, "Soft-and-hard/DB boundary conditions realized by a skewon-axion medium," IEEE Trans. Antennas Propag., Vol. 61, No. 2, 768-774, February 2013.
doi:10.1109/TAP.2012.2223445

14. Lindell, I. V. and A. Sihvola, "Generalized soft-and-hard/DB boundary," IEEE Trans. Antennas Propag., Vol. 65, No. 1, 226-233, January 2017.
doi:10.1109/TAP.2016.2628360

15. Heaviside, O., Electrical Papers, New York, Chelsea, 1970; reprint of the first edition, Vol. 1, 447; Vol. 2, 172–175, London, August 1886.

16. Lindell, I. V. and A. H. Sihvola, "Transformation method for problems involving perfect electromagnetic conductor (PEMC) structures," IEEE Trans. Antennas Propag., Vol. 53, No. 9, 3005-3011, September 2005.
doi:10.1109/TAP.2005.854519

17. Fushchich, W. I. and A. G. Nikitin, "On the new symmetries of Maxwell equations," Czech. J. Phys., Vol. B32, 476-480, 1982.
doi:10.1007/BF01596203

18. Mignaco, J. A., "Electromagnetic duality, charges, monopoles, topology, ...," Braz. J. Phys., Vol. 31, No. 2, 2001.
doi:10.1590/S0103-97332001000200014

19. Lindell, I. V., A. Sihvola, P. Yl¨a-Oijala, and H. Wallen, "Zero backscattering from self-dual objects of finite size," IEEE Trans. Antennas Propag., Vol. 57, No. 9, 2725-2731, September 2009.
doi:10.1109/TAP.2009.2027180

20. Lindell, I. V. and A. Sihvola, "Generalization of perfect electromagnetic conductor (PEMC) boundary,", arXiv:1912.00436v1 [physics.class-ph], December 1, 2019.
doi:10.1109/TAP.2009.2027180

21. Liu, F., S. Xiao, A. Sihvola, and J. Li, "Perfect co-circular polarization reflector: A class of reciprocal perfect conductors with total co-circular polarization reflection," IEEE Trans. Antennas Propag., Vol. 62, No. 12, 6274-6281, 2014.
doi:10.1109/TAP.2014.2364298

22. Tedeschi, N., F. Frezza, and A. Sihvola, "Reflection and transmission at the interface with an electric-eagnetic uniaxial medium with application to boundary conditions," IEEE Trans. Antennas Propag., Vol. 61, No. 11, 5666-5675, November 2013.
doi:10.1109/TAP.2013.2275749