Vol. 164
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2019-04-01
Gains Maximization via Impedance Matching Networks for Wireless Power Transfer
By
Progress In Electromagnetics Research, Vol. 164, 135-153, 2019
Abstract
Wireless Power Transfer (WPT) based on resonant magnetic coupling is an attractive technology for enabling the wireless recharge of electric devices and systems. One of the main drawbacks of this technology is related to the dependence of the efficiency and the power delivered to the load on possible variations of the coupling coefficient and load impedance. In order to alleviate the effects of this dependence, the optimization of appropriate adaptive matching networks is proposed in this paper. The three power gains usually adopted in the context of two-port active networks are assumed as figures of merit in the optimization process. It is theoretically and experimentally demonstrated that the maximum realizable gain of the link is achieved when the conjugate image impedance matching is realized by appropriate matching networks at both the input and output ports of the WPT link.
Citation
Qinghua Wang, Wenquan Che, Marco Dionigi, Franco Mastri, Mauro Mongiardo, and Giuseppina Monti, "Gains Maximization via Impedance Matching Networks for Wireless Power Transfer," Progress In Electromagnetics Research, Vol. 164, 135-153, 2019.
doi:10.2528/PIER18102402
References

1. Kurs, A., A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljacic, "Wireless power transfer via strongly coupled magnetic resonances," Science, Vol. 317, No. 5834, 83-86, 2007.
doi:10.1126/science.1143254

2. Imura, T. and Y. Hori, "Maximizing air gap and efficiency of magnetic resonant coupling for wireless power transfer using equivalent circuit and neumann formula," IEEE Transactions on Industrial Electronics, Vol. 58, No. 10, 4746-4752, 2011.
doi:10.1109/TIE.2011.2112317

3. Sample, A. P., D. T. Meyer, and J. R. Smith, "Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer," IEEE Transactions on Industrial Electronics, Vol. 58, No. 2, 544-554, 2011.
doi:10.1109/TIE.2010.2046002

4. Zargham, M. and P. G. Gulak, "Maximum achievable efficiency in near-field coupled power-transfer systems," IEEE Transactions on Biomedical Circuits & Systems, Vol. 6, No. 3, 228-245, 2012.
doi:10.1109/TBCAS.2011.2174794

5. Dionigi, M., M. Mongiardo, and R. Perfetti, "Rigorous network and full-wave electromagnetic modeling of wireless power transfer links," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, No. 1, 65-75, Jan. 2015.
doi:10.1109/TMTT.2014.2376555

6. Monti, G., W. Che, Q. Wang, A. Costanzo, M. Dionigi, F. Mastri, M. Mongiardo, R. Perfetti, L. Tarricone, and Y. Chang, "Wireless power transfer with three-ports networks: Optimal analytical solutions," IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 64, No. 2, 494-503, Feb. 2017.
doi:10.1109/TCSI.2016.2603187

7. Kim, J., D. H. Kim, and Y. J. Park, "Analysis of capacitive impedance matching networks for simultaneous wireless power transfer to multiple devices," IEEE Transactions on Industrial Electronics, Vol. 62, No. 5, 2807-2813, 2015.
doi:10.1109/TIE.2014.2365751

8. Kim, N. Y., K. Y. Kim, J. Choi, and C. W. Kim, "Adaptive frequency with power-level tracking system for efficient magnetic resonance wireless power transfer," Electronics Letters, Vol. 48, No. 8, 452-454, 2012.
doi:10.1049/el.2012.0580

9. Mastri, F., A. Costanzo, and M. Mongiardo, "Coupling-independent wireless power transfer," IEEE Microwave and Wireless Components Letters, Vol. 26, No. 3, 222-225, 2016.
doi:10.1109/LMWC.2016.2524560

10. Yang, Y., Y. Luo, S. Chen, and X. Wen, "A frequency-tracking and impedance-matching combined system for robust wireless power transfer," International Journal of Antennas and Propagation, 1-13, 2017.

11. Lee, J., Y. Lim, H. Ahn, J.-D. Yu, and S.-O. Lim, "Impedance-matched wireless power transfer systems using an arbitrary number of coils with exible coil positioning," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 1207-1210, 2014.

12. Hoang, H., S. Lee, Y. Kim, Y. Choi, and F. Bien, "An adaptive technique to improve wireless power transfer for consumer electronics," IEEE Transactions on Consumer Electronics, Vol. 58, No. 2, 327-332, 2012.
doi:10.1109/TCE.2012.6227430

13. Cannon, B. L., J. F. Hoburg, D. D. Stancil, and S. C. Goldstein, "Magnetic resonant coupling as a potential means for wireless power transfer to multiple small receivers," IEEE Transactions on Power Electronics, Vol. 24, No. 7, 1819-1825, 2009.
doi:10.1109/TPEL.2009.2017195

14. Xue, R.-F., K.-W. Cheng, and M. Je, "High-efficiency wireless power transfer for biomedical implants by optimal resonant load transformation," IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 60, No. 4, 867-874, 2013.
doi:10.1109/TCSI.2012.2209297

15. Beh, T. C., T. Imura, M. Kato, and Y. Hori, "Basic study of improving efficiency of wireless power transfer via magnetic resonance coupling based on impedance matching," 2010 IEEE International Symposium on Industrial Electronics (ISIE), 2011-2016, IEEE, 2010.

16. Beh, T. C., M. Kato, T. Imura, S. Oh, and Y. Hori, "Automated impedance matching system for robust wireless power transfer via magnetic resonance coupling," IEEE Transactions on Industrial Electronics, Vol. 60, No. 9, 3689-3698, 2013.
doi:10.1109/TIE.2012.2206337

17. Lim, Y., H. Tang, S. Lim, and J. Park, "An adaptive impedance-matching network based on a novel capacitor matrix for wireless power transfer," IEEE Transactions on Power Electronics, Vol. 29, No. 8, 4403-4413, 2014.
doi:10.1109/TPEL.2013.2292596

18. Waters, B. H., A. P. Sample, and J. R. Smith, "Adaptive impedance matching for magnetically coupled resonators," PIERS Proceedings, 701, Moscow, Russia, Aug. 19–23, 2012.

19. Kiani, M., U.-M. Jow, and M. Ghovanloo, "Design and optimization of a 3-coil inductive link for efficient wireless power transmission," IEEE Transactions on Biomedical Circuits and Systems, Vol. 5, No. 6, 579-591, 2011.
doi:10.1109/TBCAS.2011.2158431

20. Nikoletseas, S., Y. Yang, and A. Georgiadis, Wireless Power Transfer Algorithms, Technologies and Applications in Ad Hoc Communication Networks, Springer, 2016.

21. Mastri, F., M. Mongiardo, G. Monti, M. Dionigi, and L. Tarricone, "Gain expressions for resonant inductive wireless power transfer links with one relay element," Wireless Power Transfer, 2017.

22. Mastri, F., M. Mongiardo, G. Monti, and L. Tarricone, "Characterization of wireless power transfer links by network invariants," International Conference on Electromagnetics in Advanced Applications, 590-593, 2017.

23. Collin, R. E., Foundations for Microwave Engineering, McGraw-Hill, 1992.

24. Kurokawa, K., "Power waves and the scattering matrix," IEEE Transactions on Microwave Theory and Techniques, Vol. 13, No. 2, 194-202, 1965.
doi:10.1109/TMTT.1965.1125964

25. Roberts, S., "Conjugate-image impedances," Proceedings of the IRE, Vol. 34, No. 4, 198-204, 1946.
doi:10.1109/JRPROC.1946.234242

26. Frickey, D. A., "Conversions between s, z, y, h, abcd, and t parameters which are valid for complex source and load impedances," IEEE Transactions on Microwave Theory and Techniques, Vol. 42, No. 2, 205-211, Feb. 1994.
doi:10.1109/22.275248

27. Niu, W.-Q., J.-X. Chu, W. Gu, and A.-D. Shen, "Exact analysis of frequency splitting phenomena of contactless power transfer systems," IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 60, No. 6, 1670-1677, 2013.
doi:10.1109/TCSI.2012.2221172

28. Costanzo, A., W. Che, M. Dionigi, F. Mastri, M. Mongiardo, G. Monti, L. Tarricone, and Q. Wang, "Matched resonant inductive WPT using the coupling-independent regime: Theory and experiments," Proc. of the European Microwave Conference (EuMC), 204-207, 2017.

29. Monti, G., A. Costanzo, F. Mastri, M. Mongiardo, and L. Tarricone, "Rigorous design of matched wireless power transfer links based on inductive coupling," Radio Science, Vol. 51, No. 6, 858-867, Jun. 2016.
doi:10.1002/2016RS006043

30. Bowick, C., RF Circuit Design, Sams, 1982.

31. Van Bezooijen, A., M. A. de Jongh, F. van Straten, R. Mahmoudi, and A. H. M. van Roermund, "Adaptive impedance-matching techniques for controlling L networks," IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 57, No. 2, 495-505, 2010.
doi:10.1109/TCSI.2009.2023764