Vol. 162
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2018-06-04
Radar Imaging System for in-Service Wind Turbine Blades Inspections: Initial Results from a Field Installation at a 2 MW Wind Turbine
By
Progress In Electromagnetics Research, Vol. 162, 51-60, 2018
Abstract
This paper presents an imaging radar system for structural health monitoring (SHM) of wind turbine blades. The imaging radar system developed here is based on two frequency modulated continuous wave (FMCW) radar sensors with a high output power of 30 dBm. They have been developed for the frequency bands of 24,05 GHz-24,25 GHz and 33.4 GHz-36.0 GHz, respectively. Following the successful proof of damage detection and localization in laboratory conditions, we present here the installation of the sensor system at the tower of a 2 MW wind energy plant at 95 m above ground. The realization of the SHM-system will be introduced including the sensor system, the data acquisition framework and the signal processing procedures. We have achieved an imaging of the rotor blades using inverse synthetic aperture radar techniques under changing environmental and operational condition. On top of that, it was demonstrated that the front wall and back wall radar echo can be extracted from the measured signals demonstrating the full penetration of wind turbine blades during operation.
Citation
Jochen Moll, Jonas Simon, Moritz Malzer, Viktor Krozer, Dimitry Pozdniakov, Rahmi Salman, Manfred Durr, Michael Feulner, Andreas Nuber, and Herbert Friedmann, "Radar Imaging System for in-Service Wind Turbine Blades Inspections: Initial Results from a Field Installation at a 2 MW Wind Turbine," Progress In Electromagnetics Research, Vol. 162, 51-60, 2018.
doi:10.2528/PIER18021905
References

1. Marquez, F. P. G., J. M. P. Perez, A. P. Marugan, and M. Papaelias, "Identification of critical components of wind turbines using FTA over the time," Renewable Energy, Vol. 87, 869-883, March 2016.
doi:10.1016/j.renene.2015.09.038

2. Yang, R., Y. He, and H. Zhang, "Progress and trends in nondestructive testing and evaluation for wind turbine composite blade," Renewable and Sustainable Energy Reviews, Vol. 60, 1225-1250, July 2016.
doi:10.1016/j.rser.2016.02.026

3. Ciang, C. C., J.-R. Lee, and H.-J. Bang, "Structural health monitoring for a wind turbine system: A review of damage detection methods," Measurement Science and Technology, Vol. 19, No. 12, 122001, December 2008.
doi:10.1088/0957-0233/19/12/122001

4. Adams, D., J. White, M. Rumsey, and C. Farrar, "Structural health monitoring of wind turbines: Method and application to a HAWT," Wind Energy, Vol. 14, No. 4, 603-623, May 2011.
doi:10.1002/we.437

5. Lu, B., Y. Li, X. Wu, and Z. Yang, "A review of recent advances in wind turbine condition monitoring and fault diagnosis," Power Electronics & Machines in Wind Applications, PEMWA, 1-7, 2009.

6. Qiao, W. and D. Lu, "A survey on wind turbine condition monitoring and fault diagnosis — Part I: Components and subsystems," IEEE Transactions on Industrial Electronics, Vol. 62, No. 10, 6536-6545, October 2015.
doi:10.1109/TIE.2015.2422112

7. Zhou, H. F., H. Y. Dou, L. Z. Qin, Y. Chen, Y. Q. Ni, and J. M. Ko, "A review of full-scale structural testing of wind turbine blades," Renewable and Sustainable Energy Reviews, Vol. 33, 177-187, May 2014.
doi:10.1016/j.rser.2014.01.087

8. Kharkovsky, S. and R. Zoughi, "Microwave and millimeter wave nondestructive testing and evaluation — Overview and recent advances," IEEE Instrumentation & Measurement Magazine, Vol. 10, No. 2, 26-38, April 2007.
doi:10.1109/MIM.2007.364985

9. Zhu, Y.-K., G.-Y. Tian, R.-S. Lu, and H. Zhang, "A review of optical NDT technologies," Sensors, Vol. 11, No. 12, 7773-7798, August 2011.
doi:10.3390/s110807773

10. Li, Z., A. Haigh, C. Soutis, A. Gibson, and R. Sloan, "Microwaves sensor for wind turbine blade inspection," Applied Composite Materials, November 2016.

11. Fukasawa, R., "Terahertz imaging: Widespread industrial application in non-destructive inspection and chemical analysis," IEEE Transactions on Terahertz Science and Technology, Vol. 5, No. 6, 1121-1127, 2015.

12. Wetzel, K., K. Lee, A. Tran, B. Stakenborghs, and R. J. Woodward, "Volumetric inspection of wind turbine blades using a microwave interferometric technique," Materials Evaluation, 477-484, 2016.

13. Ghasr, M. T., M. J. Horst, M. R. Dvorsky, and R. Zoughi, "Wideband microwave camera for real-time 3-D imaging," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 1, 258-268, January 2017.
doi:10.1109/TAP.2016.2630598

14. Hsu, D. K., K.-S. Lee, J.-W. Park, Y.-D. Woo, and K.-H. Im, "NDE inspection of terahertz waves in wind turbine composites," International Journal of Precision Engineering and Manufacturing, Vol. 13, No. 7, 1183-1189, July 2012.
doi:10.1007/s12541-012-0157-5

15. Li, C., Z. Peng, T.-Y. Huang, T. Fan, F.-K. Wang, T.-S. Horng, J.-M. Munoz-Ferreras, R. GomezGarcia, L. Ran, and J. Lin, "A review on recent progress of portable short-range noncontact microwave radar systems," IEEE Transactions on Microwave Theory and Techniques, 1-15, 2017.

16. Moll, J., P. Arnold, M. M¨alzer, V. Krozer, D. Pozdniakov, R. Salman, S. Rediske, M. Scholz, H. Friedmann, and A. Nuber, "Radar-based structural health monitoring of wind turbine blades: The case of damage detection," Structural Health Monitoring: An International Journal, 147592171772144, August 2017.
doi:10.1177/1475921717721447

17. Arnold, P., J. Moll, M. Malzer, V. Krozer, D. Pozdniakov, R. Salman, S. Rediske, M. Scholz, H. Friedmann, and A. Nuber, "Radar-based structural health monitoring of wind turbine blades: The case of damage localization," Wind Energy, January 2018.

18. Moll, J., V. Krozer, P. Arnold, M. D¨urr, R. Zimmermann, R. Salman, D. H¨ubsch, H. Friedmann, A. Nuber, M. Scholz, and P. Kraemer, "Radar-based structural health monitoring of wind turbine blades," 19th World Conference on Non-Destructive Testing, 1-8, Munich, Germany, 2016.

19. Moll, J., M. Malzer, J. Simon, V. Krozer, M. Feulner, H. Friedmann, A. Nuber, R. Salman, D. Pozdniakov, and M. Durr, "Field demonstration of radar-based SHM of wind turbine blades at a 2 MW wind turbine: Installation, data acquisition and signal analysis," 11th International Workshop on Structural Health Monitoring, 1-8, Stanford, USA, 2017.

20. Scholz, N., J. Moll, M. Malzer, K. Nagovitsyn, and V. Krozer, "Random bounce algorithm: realtime image processing for the detection of bats and birds: Algorithm description with application examples from a laboratory flight tunnel and a field test at an onshore wind energy plant," Signal, Image and Video Processing, Vol. 10, No. 8, 1449-1456, November 2016.
doi:10.1007/s11760-016-0951-0

21. Moll, J. and V. Krozer, "Radar-based mechanical vibration sensing for structural health monitoring applications: A comparison of radar transceiver measurements at 24 GHz and 100 GHz," 8th European Workshop on Structural Health Monitoring, 1-6, 2016.

22. Moll, J., M. Malzer, V. Krozer, D. Pozdniakov, R. Salman, J. M. Beetz, and M. Kossl, "Activity monitoring of bats in a laboratory flight tunnel using a 24 GHz FMCW radar system," 11th European Conference on Antennas and Propagation, 2541-2545, Paris, France, 2017.

23. Soumekh, M., Synthetic Aperture Radar Signal Processing with MATLAB Algorithms, Wiley, New York, OCLC: 833493976, 1999.

24. Sakamoto, T., T. Sato, P. Aubry, and A. Yarovoy, "Frequency-domain Kirchhoff migration for near-field radar imaging," IEEE Conference on Antenna Measurements & Applications, 1-4, 2015.

25. Sakamoto, T., T. Sato, P. J. Aubry, and A. G. Yarovoy, "Ultra-wideband radar imaging using a hybrid of kirchhoff migration and stolt F-K migration with an inverse boundary scattering transform," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 8, 3502-3512, 2015.
doi:10.1109/TAP.2015.2431725

26. Zhuge, X. and A. G. Yarovoy, "Three-dimensional near-field MIMO array imaging using range migration techniques," IEEE Transactions on Image Processing, Vol. 21, No. 6, 3026-3033, 2012.
doi:10.1109/TIP.2012.2188036

27. Gorham, L. A. and L. J. Moore, "SAR image formation toolbox for MATLAB,", 769906-769906-13, April 2010.

28. Arnold, P., J. Moll, and V. Krozer, "Design of a sparse antenna array for radar-based structural health monitoring of wind turbine blades," IET Radar, Sonar & Navigation, Vol. 11, No. 8, 1259-1265, August 2017.
doi:10.1049/iet-rsn.2016.0355