login
Vol. 162
Latest Volume
All Volumes
PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2018-05-02
Microwave Non-Invasive Temperature Monitoring Using UWB Radar for Cancer Treatment by Hyperthermia
By
Progress In Electromagnetics Research, Vol. 162, 1-14, 2018
Abstract
Objective: In this paper we present a study of a novel method to noninvasively monitor temperature noninvasively during thermotherapy, for instance, in cancer treatment using M-sequence radar technology. The main objective is to investigate the temperature dependence of reflectivity in UWB radar signal in gelatine phantoms using electrically small antennas. Methods: The phantom was locally heated up, and consequently changes of signal reflectivity were observed. Results: An approximate linear relationship between temperature change and reflectivity variations was formulated. To show the potential of this approach we used an M-sequence MIMO radar system. The system was tested on breast-shape phantom with local heating by circulating water of controlled temperature. For two dimensional imaging the Delay and Sum algorithm was implemented for two-dimensional imaging. Significance: The article is a study of temperature measurement using UWB radar system for possible usage in thermotherapy.
Citation
Ondrej Fiser, Marko Helbig, Juergen Sachs, Sebastian Ley, Ilja Merunka, and Jan Vrba, "Microwave Non-Invasive Temperature Monitoring Using UWB Radar for Cancer Treatment by Hyperthermia," Progress In Electromagnetics Research, Vol. 162, 1-14, 2018.
doi:10.2528/PIER17111609
References

1. Vrba, J., M. Lapes, and L. Oppl, "Technical aspects of microwave thermotherapy," Bioelectrochemistry and Bioenergetics, Vol. 48, No. 2, 305-309, May 1999.
doi:10.1016/S0302-4598(99)00039-2

2. Schena, E., D. Tosi, P. Saccomandi, E. Lewis, and T. Kim, "Fiber optic sensors for temperature monitoring during thermal treatments: An overview," Sensors (Basel), Vol. 16, No. 7, Jul. 2016.

3. Frich, L., "Non-invasive thermometry for monitoring hepatic radiofrequency ablation," Minim. Invasive Ther. Allied Technol., Vol. 15, No. 1, 18-25, Jan. 2006.
doi:10.1080/13645700500470025

4. Wlodarczyk, W., M. Hentschel, P. Wust, R. Noeske, N. Hosten, H. Rinneberg, and R. Felix, "Comparison of four magnetic resonance methods for mapping small temperature changes," Phys. Med. Biol., Vol. 44, No. 2, 607-624, Feb. 1999.
doi:10.1088/0031-9155/44/2/022

5. Klemetsen, Ø. and S. Jacobsen, "Improved radiometric performance attained by an elliptical microwave antenna with suction," IEEE Transactions on Biomedical Engineering, Vol. 59, No. 1, 263-271, Jan. 2012.
doi:10.1109/TBME.2011.2172441

6. Dubois, L., J.-P. Sozanski, V. Tessier, J.-C. Camart, J.-J. Fabre, J. Pribetich, and M. Chive, "Temperature control and thermal dosimetry by microwave radiometry in hyperthermia," IEEE Transactions on Microwave Theory and Techniques, Vol. 44, No. 10, 1755-1761, Oct. 1996.
doi:10.1109/22.539932

7. Karathanasis, K. T., I. A. Gouzouasis, I. S. Karanasiou, and N. K. Uzunoglu, "Experimental study of a hybrid microwave radiometry-hyperthermia apparatus with the use of an anatomical head phantom," IEEE Transactions on Information Technology in Biomedicine, Vol. 16, No. 2, 241-247, Mar. 2012.
doi:10.1109/TITB.2012.2187301

8. Arthur, R. M., W. L. Straube, J. W. Trobaugh, and E. G. Moros, "Non-invasive estimation of hyperthermia temperatures with ultrasound," International Journal of Hyperthermia, Vol. 21, No. 6, 589-600, Sep. 2005.
doi:10.1080/02656730500159103

9. Meaney, P. M., T. Zhou, M. W. Fanning, S. D. Geimer, and K. D. Paulsen, "Microwave thermal imaging of scanned focused ultrasound heating: Phantom results," International Journal of Hyperthermia, Vol. 24, No. 7, 523-536, Jan. 2008.
doi:10.1080/02656730801944922

10. Meaney, P. M., K. D. Paulsen, M. W. Fanning, D. Li, and Q. Fang, "Image accuracy improvements in microwave tomographic thermometry: Phantom experience," International Journal of Hyperthermia, Vol. 19, No. 5, 534-550, Jan. 2003.
doi:10.1080/0265673031000082386

11. Meaney, P. M., et al., "Microwave thermal imaging: Initial in vivo experience with a single heating zone," International Journal of Hyperthermia, Vol. 19, No. 6, 617-641, 2003.
doi:10.1080/0265673031000140822

12. Haynes, M., J. Stang, and M. Moghaddam, "Real-time microwave imaging of differential temperature for thermal therapy monitoring," IEEE Transactions on Biomedical Engineering, Vol. 61, No. 6, 1787-1797, Jun. 2014.
doi:10.1109/TBME.2014.2307072

13. Fiser, O., M. Helbig, S. Ley, J. Sachs, and J. Vrba, "Feasibility study of temperature change detection in phantom using M-sequence radar," 2016 10th European Conference on Antennas and Propagation (EuCAP), 1-4, 2016.

14. Miyakawa, M., "Tomographic measurement of temperature change in phantoms of the human body by chirp radar-type microwave computed tomography," Med. Biol. Eng. Comput., Vol. 31 Suppl, No. S1, S31-6, Jul. 1993.

15. Bertero, M., M. Miyakawa, P. Boccacci, F. Conte, K. Orikasa, and M. Furutani, "Image restoration in chirp-pulse microwave CT (CP-MCT)," IEEE Transactions on Biomedical Engineering, Vol. 47, No. 5, 690-699, May 2000.
doi:10.1109/10.841341

16. Bolomey, J.-C., C. Durix, and D. Lesselier, "Determination of conductivity profiles by time-domain reflectometry," IEEE Trans. Antennas Propag., Vol. 27, No. 2, 244-248, Mar. 1979.
doi:10.1109/TAP.1979.1142067

17. Sachs, J., Handbook of Ultra-Wideband Short-Range Sensing: Theory, Sensors, Applications, Wiley-VCH, 2012.
doi:10.1002/9783527651818

18. Lazebnik, M., M. C. Converse, J. H. Booske, and S. C. Hagness, "Ultrawideband temperaturedependent dielectric properties of animal liver tissue in the microwave frequency range," Phys. Med. Biol., Vol. 51, No. 7, 1941-1955, Apr. 2006.
doi:10.1088/0031-9155/51/7/022

19. Kato, H., M. Hiraoka, and T. Ishida, "An agar phantom for hyperthermia," Medical Physics, Vol. 13, No. 3, 396-398, May 1986.
doi:10.1118/1.595882

20. Ellison, W. J., "Permittivity of pure water, at standard atmospheric pressure, ver the frequency range 0–25 THz and the temperature range 0–100C," Journal of Physical and Chemical Reference Data, Vol. 36, No. 1, 1-18, 2007.
doi:10.1063/1.2360986

21. Ley, S., O. Fiser, I. Merunka, J. Vrba, J. Sachs, and M. Helbig, "Preliminary investigations for reliable temperature dependent UWB dielectric spectroscopy of tissues and tissue mimicking phantom materials," European Conference on Antennas and Propagation (EuCAP), London, Apr. 2018.

22. Helbig, M., J. Sachs, F. Tansi, I. Hilger, "Experimental feasibility study of contrast agent enhanced UWB breast imaging by means of M-sequence sensor systems," 2014 8th European Conference on Antennas and Propagation (EuCAP), 311-315, 2014.
doi:10.1109/EuCAP.2014.6901755

23. Lazebnik, M., E. L. Madsen, G. R. Frank, and S. C. Hagness, "Tissue-mimicking phantom materials for narrowband and ultrawideband microwave applications," Phys. Med. Biol., Vol. 50, No. 18, 4245, 2005.
doi:10.1088/0031-9155/50/18/001

24. Helbig, M., M. Kmec, J. Sachs, C. Geyer, I. Hilger, and G. Rimkus, "Aspects of antenna array configuration for UWB breast imaging," 2012 6th European Conference on Antennas and Propagation (EUCAP), 1737-1741, 2012.
doi:10.1109/EuCAP.2012.6206594

25. Conceicao, R. C., J. J. Mohr, and M. O’Halloran (Eds.), "An Introduction to Microwave Imaging for Breast Cancer Detection," Springer International Publishing, 2016.