Vol. 156
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2016-04-26
Ferrite Magnetic-Anisotropy Field Effects on Inductance and Quality Factor of Planar GHz Inductors
By
Progress In Electromagnetics Research, Vol. 156, 25-35, 2016
Abstract
Planar gigahertz (GHz) inductors were fabricated based on high crystalline-anisotropy Zn0.13Co0.04Ni0.63Fe2.2O4 (Zn-Co-Ni ferrite) and Ba3Co2Fe24O41 (Co2Z hexaferrite) and characterized for inductance (L) and quality (Q) factor. The planar ferrite inductors show an L of 4.5 nH (Zn-Co-Ni), 5.6 nH (Zn-Co-Ni + low Hk and fFMR Co2Z:), and 4.8 nH (Zn-Co-Ni + high Hk and fFMR Co2Z:) at 2 GHz. The corresponding L-densities are 18.0, 22.4, and 19.2 nH/mm2, which are greater than 16.8 nH/mm2 of the air-core inductor. With respect to the Q factor, the air-core and ferrite inductors exhibit Q factors of 6.7 (air-core), 4.8 (Zn-Co-Ni), 2.8 (Zn-Co-Ni + low Hk Co2Z), and 4.0 (Zn-Co-Ni + high Hk Co2Z) at 2 GHz. The tan δμ of the ferrites caused a reduction in the Q factor. Nevertheless, the high Hk and fFMR Co2Z ferrite inductor demonstrates a higher Q factor than that of the low Hk and fFMR Co2Z inductor. It is, therefore, suggested that high-resistivity, -anisotropy, -magnetization ferrite can produce large L-density and Q-factor GHz inductors.
Citation
Jaejin Lee, Yang-Ki Hong, Changhan Yun, Woncheol Lee, Ji-Hoon Park, and Soek Bae, "Ferrite Magnetic-Anisotropy Field Effects on Inductance and Quality Factor of Planar GHz Inductors," Progress In Electromagnetics Research, Vol. 156, 25-35, 2016.
doi:10.2528/PIER16020901
References

1. Yamaguchi, M., M. Baba, and K. I. Arai, "Sandwich-type ferromagnetic RF integrated inductor," IEEE Trans. Microwave Theory Tech., Vol. 49, No. 12, 2331-2335, 2001.
doi:10.1109/22.971617

2. Gardner, D. S., G. Schorom, P. Hazucha, F. Paillet, T. Karnik, S. Borkar, R. Hallstein, T. Dambrauskas, C. Hill, C. Linde, W. Worwang, R. Baresel, and S. Muthukumar, "Integrated on-chip inductors using magnetic material," J. Appl. Phys., Vol. 103, No. 7, 07E927-1-07E927-6, 2008.
doi:10.1063/1.2838012

3. Sato, N., Y. Endo, and M. Yamaguchi, "Skin effect suppression for Cu/CoZrNd multilayered inductor," J. Appl. Phys., Vol. 111, No. 7, 07A501-1-07A501-3, 2012.
doi:10.1063/1.3670061

4. Gao, Y., S. Zare, X. J. Yang, T. X. Nan, Z. Y. Zhou, M. Onabajo, K. P. O’Brien, U. Jalan, M. El-tanani, P. Fisher, M. Liu, A. Aronow, K. Mahalingam, B. M. Howe, G. J. Brown, and N. X. Sun, "High quality factor integrated gigahertz magnetic transformers with FeGaB/Al2O3 multilayer films for radio frequency integrated circuits applications," J. Appl. Phys., Vol. 115, No. 17, 17E714-1-17E714-3, 2014.
doi:10.1063/1.4871835

5. Davies, R. P., C. Cheng, N. Sturcken, W. E. Bailey, and K. L. Shepard, "Coupled inductors with crossed anisotropy CoZrTa/SiO2 multilayer cores," IEEE Trans. Magn., Vol. 49, No. 7, 4009-4012, 2013.
doi:10.1109/TMAG.2013.2237892

6. Kaneko, K., N. Inoue, N. Furutake, and Y. Hayashi, "A novel multilayered Ni-Zn-ferrite/TaN film for RF/mobile applications," Jpn. J. Appl. Phys., Vol. 49, No. 4, 04DB15-1-04DB15-5, 2010.
doi:10.1143/JJAP.49.04DB15

7. Qu, W., X. H. Wang, and L. Li, "Preparation and performance of NiCuZn-Co2Z composite ferrite material," J. Magn. Magn. Mater., Vol. 257, No. 2–3, 284-289, 2003.
doi:10.1016/S0304-8853(02)01210-6

8. Cai, H. L., J. Zhan, C. Yang, X. Chen, Y. Yang, B. Y. Chi, A. Wang, and T. L. Ren, "Application of ferrite nanomaterial in RF on-chip inductors," J. Nanomater., Vol. 2013, 1-12, 2013.
doi:10.1155/2013/832401

9. Yang, C., F. Liu, X. Wang, J. Zhan, A. Wang, T. L. Ren, L. T. Liu, H. Long, Z. Wu, and X. Li, "Investigation of on-chip soft-ferrite-integrated inductors for RFICs --- Part II: Experiments," IEEE Trans. Electron Devices, Vol. 56, No. 12, 3141-3148, 2009.
doi:10.1109/TED.2009.2033413

10. Cai, H. L., Y. Yang, N. Qi, X. Chen, H. Tian, Z. Song, Y. Xu, C. J. Zhou, J. Zhan, A. Wang, B. Chi, and T. L. Ren, "A 2.7-mW 1.36–1.86-GHz LC-VCO with a FOM of 202 dBc/Hz enabled by a 26%-size-reduced nano-particle-magnetic-enhanced inductor," IEEE Trans. Microwave Theory Tech., Vol. 62, No. 5, 1221-1228, 2014.
doi:10.1109/TMTT.2014.2312886

11. Kittel, C., "On the theory of ferromagnetic resonance absorption," Phys. Rev., Vol. 73, No. 2, 155-161, 1948.
doi:10.1103/PhysRev.73.155

12. Smit, J. and H. P. J. Wijn, Ferrites, 271, John Wiley & Sons, New York, 1959.

13. Lee, D. W., K. P. Hwang, and S. X. Wang, "Fabrication and analysis of high-performance integrated solenoid inductor with magnetic core," IEEE Trans. Magn., Vol. 44, No. 11, 4089-4095, 2008.
doi:10.1109/TMAG.2008.2003398

14. Lee, D. W. and S. X. Wang, "Effects of geometries on permeability spectra of CoTaZr magnetic cores for high frequency applications," J. Appl. Phys., Vol. 103, No. 7, 07E907-1-07E907-3, 2008.

15. Soohoo, R. F., "Magnetic thin film inductor for integrated circuit applications," IEEE Trans. Magn., Vol. 15, No. 6, 1803-1805, 1979.
doi:10.1109/TMAG.1979.1060499

16. Moulson, J. and J. M. Herbert, Electroceramics: Materials, Properties, Applications, John Wiley & Sons, 2003.

17. Chikazumi, S., Physics of Ferromagnetism, John Wiley & Sons, 1964.

18. Stoppels, D., "Developments in soft magnetic power ferrites," J. Magn. Mater., Vol. 160, No. 1, 323-328, 1996.
doi:10.1016/0304-8853(96)00216-8

19. Tsutaoka, T., M. Ueshima, and T. Tokunaga, "Frequency dispersion and temperature variation of complex permeability of Ni-Zn ferrite composite materials," J. Appl. Phys., Vol. 78, No. 6, 3983-3991, 1995.
doi:10.1063/1.359919

20. Rado, G. T., R. W. Wright, and W. H. Emerson, "Ferromagnetism at very high frequencies. III. Two mechanisms of dispersion in a ferrite," Phys. Rev., Vol. 80, No. 2, 273-280, 1950.
doi:10.1103/PhysRev.80.273

21. Lee, J., Y. K. Hong, S. Bae, J. Jalli, G. S. Abo, J. Park, W. M. Seong, S. H. Park, and W. K. Ahn, "Low loss Co2Z (Ba3 Co2Fe24O41)-glass composite for gigahertz antenna application," J. Appl. Phys., Vol. 109, No. 7, 07E530-1-07E530-3, 2011.

22. Bae, S., Y. K. Hong, J. J. Lee, J. Jalli, G. S. Abo, A. Lyle, I. T. Nam, W. M. Seong, J. S. Kim, and S. H. Park, "“New synthetic route of Z-type (Ba3Co2Fe24O41) hexaferrite particles," IEEE Trans. Magn., Vol. 45, No. 6, 2557-2560, 2009.
doi:10.1109/TMAG.2009.2018883

23. Yook, J. M., J. H. Ko, M. L. Ha, and Y. S. Kwon, "High-quality solenoid inductor using dielectric film for multichip modules," IEEE Trans. Microwave Theory Tech., Vol. 53, No. 6, 2230-2234, 2005.
doi:10.1109/TMTT.2005.848775

24. Lee, D. W., Integrated inductor with magnetic core: A realistic option.

25. Kondo, K., T. Chiba, H. Ono, S. Yoshida, Y. Shimada, N. Matsushita, and M. Abe, "Conducted noise suppression effect up to 3GHz by NiZn ferrite film plated at 90oC directly onto printed circuit board," J. Appl. Phys., Vol. 93, No. 10, 7130-7132, 2003.
doi:10.1063/1.1555362

26. Tanaka, T., Y. K. Hong, S. H. Gee, M. H. Park, D. W. Erickson, and C. Byun, "Analytical calculation for estimation of magnetic film properties for a 3-GHz thin film inductor," IEEE Trans. Magn., Vol. 40, No. 4, 2005-2007, 2004.
doi:10.1109/TMAG.2004.832251

27. Shen, X., R. Gong, Z. Feng, and Y. Nie, "Effective permeability of NiZnCo ferrite granular thin films," J. Am. Ceram. Soc., Vol. 90, No. 7, 2196-2199, 2007.
doi:10.1111/j.1551-2916.2007.01674.x