Vol. 150
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2015-01-29
An Overview of the Evolution of Method of Moments Techniques in Modern EM Simulators (Invited Paper)
By
Progress In Electromagnetics Research, Vol. 150, 109-121, 2015
Abstract
This paper presents an evolution of the challenges and solutions found in the application of techniques based on the Method of Moments until the present day. The original MoM presented very high computational restrictions that have motivated the development of more efficient approaches. The main features of these newer improvements are presented, as well as other technical details regarding preconditioning and parallelization techniques. Some representative examples are shown in order to assert the suitability of these approaches for the analysis of complex and realistic scenarios.
Citation
Carlos Delgado, Eliseo Garcia, Javier Moreno, Ivan Gonzalez-Diego, and Felipe Catedra, "An Overview of the Evolution of Method of Moments Techniques in Modern EM Simulators (Invited Paper)," Progress In Electromagnetics Research, Vol. 150, 109-121, 2015.
doi:10.2528/PIER14121603
References

1. Maxwell, J. C., "A dynamical theory of the electromagnetic field," Philosophical Transactions of the Royal Society of London, Vol. 155, 459-512, 1865.
doi:10.1098/rstl.1865.0008

2. Kouyoumjian, R. G., "Asymptotic high-frequency methods," Proceedings of the IEEE, Vol. 53, No. 8, 864-876, Aug. 1965.
doi:10.1109/PROC.1965.4065

3. Knott, E. F., "A progression of high-frequency RCS prediction techniques," Proceedings of the IEEE, Vol. 73, No. 2, 252-264, Feb. 1985.
doi:10.1109/PROC.1985.13137

4. Harrington, R. F., Field Computation by Moment Methods, McMillan, New York, 1968.

5. Chew, W. C., J.-M. Jin, C.-C. Lu, E. Michielssen, and J. Song, Fast and Efficient Algorithms in Computational Electromagnetics, Artech House, 2001.

6. Rao, S. M., D. R. Wilton, and . W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propagat., Vol. 30, No. 3, 409-412, May 1982.
doi:10.1109/TAP.1982.1142818

7. Glisson, A. W. and D. R. Wilton, "Simple and efficient numerical methods for problems of electromagnetic radiation and scattering from surfaces," IEEE Trans. Antennas Propagat., Vol. 28, No. 5, 593-603, Sep. 1980.
doi:10.1109/TAP.1980.1142390

8. Engheta, N., W. D. Murphy, V. Rokhlin, and M. S. Vassiliou, "The fast multipole method (FMM) for electromagnetic scattering problems," IEEE Trans. Antennas Propagat., Vol. 40, No. 6, 634-641, Jun. 1992.
doi:10.1109/8.144597

9. Coifman, R., V. Rokhlin, and S. Wandzura, "The fast multipole method for the wave equation: A pedestrian prescription," IEEE Antennas and Propagation Magazine, Vol. 35, No. 3, 7-12, Jun. 1993.
doi:10.1109/74.250128

10. Chew, W. C., J.-M. Jin, C.-C. Lu, E. Michielssen, and J. Song, "Fast solution methods in electromagnetics," IEEE Trans. Antennas Propagat., Vol. 45, No. 3, 533-543, 1997.
doi:10.1109/8.558669

11. Burkholder, R. and J. F. Lee, "Fast dual MGS block-factorization algorithm for dense MoM matrices," IEEE Trans. Antennas Propagat., Vol. 52, No. 7, 1693-1699, 2004.
doi:10.1109/TAP.2004.831333

12. Ozdemir, N. A. and J. F. Lee, "A low rank IE-QR algorithm for matrix compression in volume integral equations," IEEE Trans. Magn., Vol. 40, No. 2, 1017-1020, 2004.
doi:10.1109/TMAG.2004.824575

13. Zhao, K., M. N. Vouvakis, and J.-F. Lee, "The adaptive cross approximation algorithm for accelerated method of moments computations of EMC problems," IEEE Trans. Electromag. Compat., Vol. 47, No. 4, 763-773, 2005.
doi:10.1109/TEMC.2005.857898

14. Laviada, J., R. Mittra, M. R. Pino, and F. Las-Heras, "On the convergence of the ACA," Microwave Opt. Technol. Lett., Vol. 51, No. 10, 2458-2460, 2009.
doi:10.1002/mop.24637

15. Heldring, A., E. Ubeda, and J. M. Rius, "On the convergence of the ACA algorithm for radiation and scattering problems," IEEE Trans. Antennas Propag., Vol. 62, No. 7, 3806-3809, 2014.
doi:10.1109/TAP.2014.2316293

16. Tamayo, J., A. Heldring, and J. Rius, "Multilevel adaptive cross approximation (MLACA)," IEEE Trans. Antennas Propagat., Vol. 59, No. 12, 4600-4608, 2011.
doi:10.1109/TAP.2011.2165476

17. Schroder, A., H.-D. Bruns, and C. Schuster, "Fast evaluation of electromagnetic fields using a parallelized adaptive cross approximation," IEEE Trans. Antennas Propagat., Vol. 62, No. 5, 2818-2822, 2014.
doi:10.1109/TAP.2014.2303819

18. Schroder, A., H.-D. Bruns, and C. Schuster, "A hybrid approach for rapid computation of two-dimensional," IEEE Trans. Antennas Propagat., Vol. 60, No. 12, 6058-6061, 2012.
doi:10.1109/TAP.2012.2209858

19. Maaskant, R., R. Mittra, and A. Tijhuis, "Fast analysis of large antenna arrays using the characteristic basis function method and the adaptive cross approximation algorithm," IEEE Trans. Antennas Propagat., Vol. 56, No. 11, 3440-3451, 2008.
doi:10.1109/TAP.2008.2005471

20. Boag, A. and R. Mittra, "Complex multipole beam approach to electromagnetic scattering problems," IEEE Trans. Antennas Propagat., Vol. 42, No. 3, 366-372, 1994.
doi:10.1109/8.280723

21. Tap, K., P. H. Pathak, and R. J. Burkholder, "Complex source beam-moment method procedure for accelerating numerical integral equation solutions of radiation and scattering problems," IEEE Trans. Antennas Propagat., Vol. 62, No. 4, 2052-2062, 2014.
doi:10.1109/TAP.2014.2298536

22. Canning, F. X., "The impedance matrix localization (IML) method for method of moment calculations," IEEE Antennas and Propagation Magazine, Vol. 32, 18-30, 1990.
doi:10.1109/74.80583

23. Bleszynski, E., M. Bleszynski, and T. Jaroszewcz, "AIM: Adaptive integral method compression algorithm for solving large scale electromagnetic scattering and radiation problems," Radio Sci., Vol. 31, 1225-1251, 1996.
doi:10.1029/96RS02504

24. Michelsen, E. and A. Boag, "A multilevel matrix decomposition algorithm for analyzing scattering from large structures," IEEE Trans. Antennas Propagat., Vol. 44, No. 8, 1086-1093, Aug. 1996.
doi:10.1109/8.511816

25. Prakash, V. V. S. and R. Mittra, "Characteristic basis function method: A new technique for efficient solution of method of moments matrix equation," Microwave Opt. Technol. Lett., Vol. 36, No. 2, 95-100, Jan. 2003.
doi:10.1002/mop.10685

26. Delgado, C., F. Catedra, and R. Mittra, "Application of the characteristic basis function method utilizing a class of basis and testing functions defined on NURBS patches," IEEE Trans. Antennas Propagat., Vol. 56, No. 3, 784-791, Mar. 2008.
doi:10.1109/TAP.2008.916935

27. Matekovits, L., V. A. Laza, and G. Vecchi, "Analysis of large complex structures with the synthetic-functions approach," IEEE Trans. Antennas Propagat., Vol. 55, No. 9, 2509-2521, Sep. 2007.
doi:10.1109/TAP.2007.904073

28. Delgado, C., R. Mittra, and F. Catedra, "Accurate representation of the edge behavior of current when using PO-derived characteristic basis functions," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 43-45, Mar. 2008.
doi:10.1109/LAWP.2008.915797

29. Garcıa, E., C. Delgado, I. Gonzalez, and F. Catedra, "An iterative solution for electrically large problems combining the characteristic basis function method and the multilevel fast multipole algorithm," IEEE Trans. Antennas Propagat., Vol. 56, No. 8, 2363-2371, 2008.
doi:10.1109/TAP.2008.926781

30. Blackford, L. S., J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley, "ScaLAPACK Users’ Guide," SIAM, 1997.

31. Traff, J. L., W. D. Gropp, and R. Thakur, "Self-consistent MPI performance guidelines," IEEE Trans. Parallel and Distributed Systems, Vol. 21, No. 5, 698-709, May 2010.
doi:10.1109/TPDS.2009.120

32. Saad, Y., Iterative Methods for Sparse Linear Systems, 2nd Edition, SIAM, Philadelphia, 2003.
doi:10.1137/1.9780898718003

33. Van der Vorst, H. A., "Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems," SIAM J. Sci. and Stat. Comput., Vol. 13, No. 2, 631-644, 1992.
doi:10.1137/0913035

34. Saad, Y. and M. H. Schultz, "GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems," SIAM J. Sci. and Stat. Comput., Vol. 7, 856-869, 1986.
doi:10.1137/0907058

35. Kharchenko, S. A. and A. Yu. Yeremin, "New GMRES(k)-type algorithms with explicit restarts and the analysis of their convergence properties based on matrix relations in QR form," Journal of Mathematical Sciences,, Vol. 114, No. 6, 2003.
doi:10.1023/A:1022470922964

36. Canning, F. X. and J. F. Scholl, "Diagonal preconditioners for the EFIE using a wavelet basis," IEEE Trans. Antennas Propagat., Vol. 44, No. 9, 1239-1246, 1996.
doi:10.1109/8.535382

37. Lee, J., C.-C. Lu, and J. Zhang, "Incomplete LU preconditioning for large scale dense complex linear systems from electromagnetic wave scattering problems," J. Comp. Phys., Vol. 185, 158-175, 2003.
doi:10.1016/S0021-9991(02)00052-9

38. Kolotilina, L. Y., "Explicit preconditioning of systems of linear algebraic equations with dense matrices," Journal of Soviet Mathematics, Vol. 43, No. 4, 2566-2573, Nov. 1988.
doi:10.1007/BF01374987

39. Carpentieri, B., I. S. Duff, L. Giraud, and G. Sylvand, "Combining fast multipole techniques and an approximate inverse preconditioner for large electromagnetism calculations," SIAM J. Sci. and Stat. Comput., Vol. 27, No. 3, 774-792, 2006.
doi:10.1137/040603917

40. Benzi, M. and M. Tuma, "A comparative study of sparse approximate inverse preconditioners," Applied Numerical Mathematics: Transactions of IMACS, Vol. 30, No. 2-3, 305-340, 1999.
doi:10.1016/S0168-9274(98)00118-4

41. Lee, J., C.-C. Lu, and J. Zhang, "Sparse inverse preconditioning of multilevel fast multipole algorithm for hybrid integral equations in electromagnetics," IEEE Trans. Antennas Propagat., Vol. 52, No. 9, 2277-2287, 2004.
doi:10.1109/TAP.2004.834084

42. Chapman, B., G. Jost, and R. van der Pas, Using OpenMP: Portable Shared Memory Parallel Programming, MIT Press, Oct. 2007.

43. Lezar, E. and D. B. Davidson, "GPU-accelerated method of moments by example: Monostatic scattering," IEEE Antennas and Propagation Magazine, Vol. 52, No. 6, 120-135, 2010.
doi:10.1109/MAP.2010.5723240

44. Pan, X. M., W. C. Pi, M. L. Yang, Z. Peng, and X. Q. Sheng, "Solving problems with over one billion unknowns by the MLFMA," IEEE Trans. Antennas Propagat., Vol. 60, No. 5, 2571-2574, 2012.
doi:10.1109/TAP.2012.2189746

45. Ergul, O. and L. Gurel, "Accurate solutions of extremely large integralequation problems in computational electromagnetics," Proceedings of the IEEE, Vol. 101, No. 2, 342-349, 2013.
doi:10.1109/JPROC.2012.2204429