Vol. 148
Latest Volume
All Volumes
PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2014-08-08
A General Solution to Wireless Power Transfer Between Two Circular Loop
By
Progress In Electromagnetics Research, Vol. 148, 171-182, 2014
Abstract
Wireless power transmision has been analytically studied in near-field coupling systems based on the small-antenna and near-field approximations, and in microwave power beaming systems based on the far-field approximation. This paper attempts to provide a general solution based on full-wave analysis to wireless power transmission between two circular loops. The solution applies to arbitrary transmit and receive loop radii, transmission range, orientation and alignment of the loops, and dielectric properties in a homogeneous isotropic medium. The power link is modeled as a two-port network and the efficiency based on simultaneous conjugate matching is used as the performance metric. The self and mutual admittances are analytically solved by expressing the current on the loops in Fourier series and the fields in vector spherical wave functions, and by the use of vector addition theorem to relate the coupling between the loops. The general solution is then applied to draw new insights such as the optimal carrier frequency between symmetric loops and impact of higher order modes on the power transfer efficiency between asymmetric loops.
Citation
Ada S. Y. Poon, "A General Solution to Wireless Power Transfer Between Two Circular Loop," Progress In Electromagnetics Research, Vol. 148, 171-182, 2014.
doi:10.2528/PIER14071201
References

1. Tesla, N., Experiments with alternate currents of very high frequency and their application to methods of artificial illumination, Lecture, American Institute of Electrical Engineers, Columbia College, NY, May 20, 1891.

2. “Apparatus for transmission of electrical energy, US Patent US 649–621, May 15, 1900.

3. Kurs, A., A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljacic, "Wireless power transfer via strongly coupled magnetic resonances," Science, Vol. 317, 83-86, July 2007.
doi:10.1126/science.1143254

4. Karalis, A., J. D. Joannopoulos, and M. Soljacic, "Efficient wireless non-radiative mid-range energy transfer," Ann. Phys., Vol. 323, No. 1, 34-48, January 2008.
doi:10.1016/j.aop.2007.04.017

5. Brown, W. C., "The history of power transmission by radio waves," IEEE Trans. Microwave Theory Tech., Vol. 32, No. 9, 1230-1242, September 1984.
doi:10.1109/TMTT.1984.1132833

6. Brown, W. C. and E. E. Eyes, "Beamed microwave power transmission and its application to space," IEEE Trans. Microwave Theory Tech., Vol. 40, No. 6, 1239-1250, June 1992.
doi:10.1109/22.141357

7. Iizuka, K., R. W. P. King, and J. C. W. Harrison, "Self- and mutual admittances of two identical circular loop antennas in a conducting medium and in air," IEEE Trans. Antennas Propag., Vol. 14, No. 4, 440-445, July 1966.
doi:10.1109/TAP.1966.1138711

8. Ito, S., N. Inagaki, and T. Sekiguchi, "An investigation of the array of circular-loop antennas," IEEE Trans. Antennas Propag., Vol. 19, No. 4, 469-476, July 1971.
doi:10.1109/TAP.1971.1139954

9. Krishnan, S., L.-W. Li, and M.-S. Leong, "Entire-domain MoM analysis of an array of arbitrary oriented circular loop antennas: A general formulation," IEEE Trans. Antennas Propag., Vol. 53, No. 9, 2961-2968, September 2005.
doi:10.1109/TAP.2005.854553

10. Danos, M. and L. C. Maximon, "Multipole matrix elements of the translation operator," J. Math. Phys., Vol. 6, No. 5, 766-778, May 1965.
doi:10.1063/1.1704333

11. He, B. and W. C. Chew, "Addition theorem," Modeling and Computations in Electromagnetics: Lecture Notes in Computational Science and Engineering, Vol. 59, 203-226, 2008.
doi:10.1007/978-3-540-73778-0_8

12. Lee, T. H., The Design of CMOS Radio-frequency Integrated Circuits, 2nd Edition, Cambridge University Press, 2003.
doi:10.1017/CBO9780511817281

13. Barrera, R. G. G., G. A. Estevez, and J. Giraldo, "Vector spherical harmonics and their application to magnetostatics," Eur. J. Phys., Vol. 6, 287-294, 1985.
doi:10.1088/0143-0807/6/4/014

14. Chew, W. C., Waves and Fields in Inhomogeneous Media, IEEE Press, 1995.