Vol. 148
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2014-08-08
Mixed Finite Element Method for 2D Vector Maxwell's Eigenvalue Problem in Anisotropic Media
By
Progress In Electromagnetics Research, Vol. 148, 159-170, 2014
Abstract
It is well known tha the conventional edge element method in solving vector Maxwell's eigenvalue problem will lead to the presence of nonphysical zero eigenvalues. This paper uses the mixed finite element method to suppress the presence of these nonphysical zero eigenvalues for 2D vector Maxwell's eigenvalue problem in anisotropic media. We introduce a Lagrangian multiplier to deal with the constraint of divergence-free condition. Our method is based on employing the first-order edge element basis functions to expand the electric field and linear nodal element basis functions to expand the Lagrangian multiplier. Our numerical experiments show that this method can successfully remove all nonphysical zero and nonzero eigenvalues. We verify that when the cavity has a connected perfect electric boundary, then there is no physical zero eigenvalue. Otherwise, the number of physical zero eigenvalues is one less than the number of disconnected perfect electric boundaries.
Citation
Wei Jiang, Na Liu, Yifa Tang, and Qing Huo Liu, "Mixed Finite Element Method for 2D Vector Maxwell's Eigenvalue Problem in Anisotropic Media," Progress In Electromagnetics Research, Vol. 148, 159-170, 2014.
doi:10.2528/PIER14052608
References

1. Zhang, K. and D. Li, Electromagnetic Theory for Microwaves and Optoelectronics, Springer, Berlin Heidelberg, 2008.

2. Mira, F., A. A. San Blas, V. E. Boria, L. J. Rogla, and B. Gimeno, "Wideband generalized admittance matrix representation for the analysis and design of waveguide filters with coaxial excitation," Radio Science, Vol. 48, No. 1, 50-60, 2013.
doi:10.1002/rds.20013

3. Dillon, B. M. and A. A. P. Gibson, "Finite element solution of dielectric-ferrite resonators," Radio Science, Vol. 31, No. 5, 1191-1198, 1996.
doi:10.1029/96RS01365

4. Silvester, P., "Finite element solution of homogeneous waveguide problems," Alta Frequenza, Vol. 38, 313-317, 1969.

5. Rahman, B. M. and J. B. Davies, "Penalty function improvement of waveguide solution by finite elements," IEEE Trans. on Microwave Theory and Tech., Vol. 32, 922-928, 1984.
doi:10.1109/TMTT.1984.1132789

6. Winkler, J. R. and J. B. Davies, "Elimination of spurious modes in finite element analysis," J. Comput. Phys., Vol. 56, 1-14, 1984.
doi:10.1016/0021-9991(84)90079-2

7. Kobelansky, A. J. and J. P. Webb, "Eliminating spurious modes in finite-element waveguide problems by using divergence-free fields," Electron. Lett., Vol. 22, 569-570, 1986.
doi:10.1049/el:19860387

8. Chew, W. C., Waves and Fields in Inhomogeneous Media, Van Nostrand Reinhold, New York, 1990.

9. Balanis, C. A., Advanced Engineering Electromagnetics, Wiley, New York, 1989.

10. Nedelec, J. C., "Mixed finite elements in R3," Numer. Math., Vol. 35, 315-341, 1980.
doi:10.1007/BF01396415

11. Nedelec, J. C., "A new family of mixed finite elements in R3," Numer. Math., Vol. 50, 57-81, 1986.
doi:10.1007/BF01389668

12. Zhou, X. and G. Pan, "Application of physical spline finite element method (PSFEM) to fullwave analysis of waveguides," Progress In Electromagnetics Research, Vol. 60, 19-41, 2006.
doi:10.2528/PIER05081102

13. Boffi, D., "Finite element approximation of eigenvalue problems," Acta Numerica, Vol. 19, 1-120, 2010.
doi:10.1017/S0962492910000012

14. Bondeson, A., T. Rylander, and P. Ingelstr, Computational Electromagnetics, Springer, New York, 2005.

15. Kikuchi, F., "Mixed and penalty formulations for finite element analysis of an eigenvalue problem in electromagnetism," Comp. Meth. Appl. Mech. Engng., Vol. 64, 509-521, 1987.

16. Venkatarayalu, N. V. and J. F. Lee, "Removal of spurious DC modes in edge element solutions for modeling three-dimensional resonators," IEEE Trans. on Microwave Theory and Tech., Vol. 54, 3019-3025, 2006.
doi:10.1109/TMTT.2006.877057

17. Goncalves, M. S., F. J. Arnold, L. L. Bravo-Roger, and T. S. Santos, "A novel approach to suppress the DC modes in eigenvalue problems using the finite element method," Microw. Opt. Techn. Lett., Vol. 55, 210-212, 2013.
doi:10.1002/mop.27256

18. Fratalocchi, A. and G. Ruocco, "Single-molecule imaging with X-ray free-electron lasers: Dream or reality?," Phys. Rev. Lett., Vol. 106, 105504, 2013.

19. Gentilini, S., A. Fratalocchi, L. Angelani, G. Ruocco, and C. Conti, "Ultrashort pulse propagation and the Anderson localization," Opt. Lett., Vol. 34, No. 2, 130-132, 2009.
doi:10.1364/OL.34.000130

20. Fratalocchi, A., C. Conti, and G. Ruocco, "Three-dimensional ab initio investigation of light-matter interaction in Mie lasers," Physical Review A, Vol. 78, 013806, 2008.
doi:10.1103/PhysRevA.78.013806

21. Brenner, S. C., F. Li, and L. Sung, "Nonconforming Maxwell eigensolvers," J. Sci. Comput., Vol. 40, 51-85, 2009.
doi:10.1007/s10915-008-9266-9

22. Ciarlet, P. G., "Basic error estimates for elliptic problem," Handbook of Numerical Analysis, Volume II, Finite Element Methods (Part 1), Elsevier Science Publishers, North-Holland, 1991.

23. Boffi, D., P. Fernandes, L. Gastaldi, and I. Perugia, "Computational models of electromagnetic resonators: Analysis of edge element approximation," SIAM J. Numer. Anal., Vol. 36, 1264-1290, 1999.
doi:10.1137/S003614299731853X

24. Costabel, M. and M. Dauge, "A remark on the regularity of solutions of Maxwell's equations on Lipschitz domains," Math. Methods Appl. Sci., Vol. 12, 365-368, 1990.
doi:10.1002/mma.1670120406

25. Costabel, M. and M. Dauge, "Maxwell and Lame eigenvalues on polyhedra," Math. Methods Appl. Sci., Vol. 22, 243-258, 1999.
doi:10.1002/(SICI)1099-1476(199902)22:3<243::AID-MMA37>3.0.CO;2-0

26. Costabel, M. and M. Dauge, "Singularities of electromagnetic fields in polyhedral domains," Arch. Ration. Mech. Anal., Vol. 151, 221-276, 2000.
doi:10.1007/s002050050197