Vol. 144
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2014-01-16
Classification of Alzheimer Disease Based on Structural Magnetic Resonance Imaging by Kernel Support Vector Machine Decision Tree
By
Progress In Electromagnetics Research, Vol. 144, 171-184, 2014
Abstract
In this paper we proposed a novel classification system to distinguish among elderly subjects with Alzheimer's disease (AD), mild cognitive impairment (MCI), and normal controls (NC). The method employed the magnetic resonance imaging (MRI) data of 178 subjects consisting of 97 NCs, 57 MCIs, and 24 ADs. First, all these three dimensional (3D) MRI images were preprocessed with atlasregistered normalization. Then, gray matter images were extracted and the 3D images were undersampled. Afterwards, principle component analysis was applied for feature extraction. In total, 20 principal components (PC) were extracted from 3D MRI data using singular value decomposition (SVD) algorithm, and 2 PCs were extracted from additional information (consisting of demographics, clinical examination, and derived anatomic volumes) using alternating least squares (ALS). On the basic of the 22 features, we constructed a kernel support vector machine decision tree (kSVM-DT). The error penalty parameter C and kernel parameter σ were determined by Particle Swarm Optimization (PSO). The weights ω and biases b were still obtained by quadratic programming method. 5-fold cross validation was employed to obtain the out-of-sample estimate. The results show that the proposed kSVM-DT achieves 80% classification accuracy, better than 74% of the method without kernel. Besides, the PSO exceeds the random selection method in choosing the parameters of the classifier. The computation time to predict a new patient is only 0.022s.
Citation
Yudong Zhang, Shuihua Wang, and Zhengchao Dong, "Classification of Alzheimer Disease Based on Structural Magnetic Resonance Imaging by Kernel Support Vector Machine Decision Tree," Progress In Electromagnetics Research, Vol. 144, 171-184, 2014.
doi:10.2528/PIER13121310
References

1. Hahn, K., et al. "Selectively and progressively disrupted structural connectivity of functional brain networks in Alzheimer's disease --- Revealed by a novel framework to analyze edge distributions of networks detecting disruptions with strong statistical evidence," NeuroImage, Vol. 81, 96-109, 2013.
doi:10.1016/j.neuroimage.2013.05.011

2. Brookmeyer, R., et al. "Forecasting the global burden of Alzheimer's disease," Alzheimers Dement, Vol. 3, No. 3, 186-191, 2007.
doi:10.1016/j.jalz.2007.04.381

3. Chen, X., W. Yang, and X. Huang, "ICA-based classification of MCI vs HC," 2011 Seventh International Conference on Natural Computation (ICNC), Vol. 3, 1658-1662, 2011.
doi:10.1109/ICNC.2011.6022275

4. Kubota, T., Y. Ushijima, and T. Nishimura, "A region-of-interest (ROI) template for three-dimensional stereotactic surface projection (3D-SSP) images: Initial application to analysis of Alzheimer disease and mild cognitive impairment ," International Congress Series, Vol. 1290, 128-134, 2006.
doi:10.1016/j.ics.2005.11.104

5. Pennanen, C., et al. "Hippocampus and entorhinal cortex in mild cognitive impairment and early AD," Neurobiology of Aging, Vol. 25, No. 3, 303-310, 2004.
doi:10.1016/S0197-4580(03)00084-8

6. Lee, W., B. Park, and K. Han, "Classification of diffusion tensor images for the early detection of Alzheimer's disease," Computers in Biology and Medicine, Vol. 43, No. 10, 1313-1320, 2013.
doi:10.1016/j.compbiomed.2013.07.004

7. Lopez, M. M., et al. "SVM-based CAD system for early detection of the Alzheimer's disease using kernel PCA and LDA," Neuroscience Letters, Vol. 464, No. 3, 233-238, 2009.
doi:10.1016/j.neulet.2009.08.061

8. Camacho, J., J. Pico, and A. Ferrer, "Corrigendum to `the best approaches in the on-line monitoring of batch processes based on PCA: Does the modelling structure matter?'," Anal. Chim. Acta, Vol. 642, 59-68, 2009.
doi:10.1016/j.aca.2009.02.001

9. Ortiz, A., et al. "LVQ-SVM based CAD tool applied to structural MRI for the diagnosis of the Alzheimer's disease," Pattern Recognition Letters, Vol. 34, No. 14, 1725-1733, 2013.
doi:10.1016/j.patrec.2013.04.014

10. Ardekani, B. A., K. Figarsky, and J. J. Sidtis, "Sexual dimorphism in the human corpus callosum: An MRI study using the OASIS brain database," Cereb Cortex, Vol. 10, No. 25, 2514-2520, 2012.

11. Ardekani, B. A., et al. "Corpus callosum shape changes in early Alzheimer's disease: An MRI study using the OASIS brain database," Brain Struct. Funct., Vol. 219, No. 1, 343-352, 2013.
doi:10.1007/s00429-013-0503-0

12. Bin Tufail, A., et al. "Multiclass classification of initial stages of Alzheimer's disease using structural MRI phase images ," 2012 IEEE International Conference on Control System, Computing and Engineering (ICCSCE), 317-321, 2012.
doi:10.1109/ICCSCE.2012.6487163

13. "What is OASIS? OASIS: Cross-sectional MRI data in young, middle aged, nondemented and demented older adults 2013,".
doi:http://www.oasis-brains.org/

14. MÄoller, C., et al. "Different patterns of gray matter atrophy in early- and late-onset Alzheimer's disease," Neurobiology of Aging, Vol. 34, No. 8, 2014-2022, 2013.
doi:10.1016/j.neurobiolaging.2013.02.013

15. Alexander, G. E., et al. "Gray matter network associated with risk for Alzheimer's disease in young to middle-aged adults," Neurobiology of Aging, Vol. 33, No. 12, 2723-2732, 2012.
doi:10.1016/j.neurobiolaging.2012.01.014

16. Smith, S. M., "Fast robust automated brain extraction," Human Brain Mapping, Vol. 17, No. 3, 143-155, 2002.
doi:10.1002/hbm.10062

17. Kuslansky, G., et al. "Detecting dementia with the Hopkins verbal learning test and the minimental state examination," Archives of Clinical Neuropsychology, Vol. 19, No. 1, 89-104, 2004.

18. Maxeiner, H. and M. Behnke, "Intracranial volume, brain volume, reserve volume and morphological signs of increased intracranial pressure | A post-mortem analysis," Legal Medicine, Vol. 10, No. 6, 293-300, 2008.
doi:10.1016/j.legalmed.2008.04.001

19. Buckner, R. L., et al. "A unified approach for morphometric and functional data analysis in young, old, and demented adults using automated atlas-based head size normalization: Reliability and validation against manual measurement of total intracranial volume," NeuroImage, Vol. 23, No. 2, 724-738, 2004.
doi:10.1016/j.neuroimage.2004.06.018

20. Fotenos, A. F., et al. "Normative estimates of cross-sectional and longitudinal brain volume decline in aging and AD," Neurology, Vol. 64, No. 6, 1032-1039, 2005.
doi:10.1212/01.WNL.0000154530.72969.11

21. Williams, M. M., et al. "Progression of Alzheimer's disease as measured by clinical dementia rating sum of boxes scores," Alzheimer's & Dementia, Vol. 9, No. 1, S39-S44, 2013.
doi:10.1016/j.jalz.2012.01.005

22. Marcus, D. S., et al. "Open access series of imaging studies (OASIS): cross-sectional MRI data in young, middle aged, nondemented, and demented older adults," J. Cogn. Neurosci., Vol. 19, No. 9, 1498-1507, 2007.
doi:10.1162/jocn.2007.19.9.1498

23. Zhang, Y. and L. Wu, "An MR brain images classi¯er via principal component analysis and kernel support vector machine," Progress In Electromagnetics Research, Vol. 130, 369-388, 2012.
doi:10.2528/PIER12061410

24. Gass, S. I. and T. Rapcsak, "Singular value decomposition in AHP," European Journal of Operational Research, Vol. 154, No. 3, 573-584, 2004.
doi:10.1016/S0377-2217(02)00755-5

25. Rajendra Acharya, U., et al. "Use of principal component analysis for automatic classification of epileptic EEG activities in wavelet framework," Expert Systems with Applications, Vol. 39, No. 10, 9072-9078, 2012.
doi:10.1016/j.eswa.2012.02.040

26. Kuroda, M., et al. "Acceleration of the alternating least squares algorithm for principal components analysis," Computational Statistics & Data Analysis, Vol. 55, No. 1, 143-153, 2011.
doi:10.1016/j.csda.2010.06.001

27. Cuingnet, R., et al. "Automatic classification of patients with Alzheimer's disease from structural MRI: A comparison of ten methods using the ADNI database," NeuroImage, Vol. 56, No. 2, 766-781, 2011.
doi:10.1016/j.neuroimage.2010.06.013

28. Arun Kumar, M. and M. Gopal, "A hybrid SVM based decision tree," Pattern Recognition, Vol. 43, No. 12, 3977-3987, 2010.
doi:10.1016/j.patcog.2010.06.010

29. Xu, Z., P. Li, and Y. Wang, "Text classifier based on an improved SVM decision tree," Physics Procedia, Vol. 33, 1986-1991, 2012.
doi:10.1016/j.phpro.2012.05.312

30. Nasseri, M., H. Tavakol-Davani, and B. Zahraie, "Performance assessment of different data mining methods in statistical downscaling of daily precipitation," Journal of Hydrology, Vol. 492, 1-14, 2013.
doi:10.1016/j.jhydrol.2013.04.017

31. Acevedo-Rodriguez, J., et al. "Computational load reduction in decision functions using support vector machines," Signal Processing, Vol. 89, No. 10, 2066-2071, 2009.
doi:10.1016/j.sigpro.2009.03.032

32. Deris, A. M., A. M. Zain, and R. Sallehuddin, , "Overview of support vector machine in modeling machining performances," Procedia Engineering, Vol. 24, 308-312, 2011.
doi:10.1016/j.proeng.2011.11.2647

33. Zhang, Y. and L. Wu, "Classification of fruits using computer vision and a multiclass support vector machine," Sensors, Vol. 12, No. 9, 12489-12505, 2012.
doi:10.3390/s120912489

34. Wu, K.-P. and S.-D. Wang, "Choosing the kernel parameters for support vector machines by the inter-cluster distance in the feature space," Pattern Recognition, Vol. 42, No. 5, 710-717, 2009.
doi:10.1016/j.patcog.2008.08.030

35. Fei, S.-W., "Diagnostic study on arrhythmia cordis based on particle swarm optimization-based support vector machine," Expert Systems with Applications, Vol. 37, No. 10, 6748-6752, 2010.
doi:10.1016/j.eswa.2010.02.126

36. Zhao, C., et al. "Fault diagnosis of sensor by chaos particle swarm optimization algorithm and support vector machine," Expert Systems with Applications, Vol. 38, No. 8, 9908-9912, 2011.
doi:10.1016/j.eswa.2011.02.078