Vol. 137
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-02-07
A Novel Synthesis Technique for Microwave Bandpass Filters with Frequency-Dependent Couplings
By
Progress In Electromagnetics Research, Vol. 137, 35-50, 2013
Abstract
This paper presents a novel synthesis technique for microwave bandpass filters with frequency-dependent couplings. The proposed method is based on the systematic extraction of a dispersive coupling coefficient using an optimization technique based on the zeros and poles of scattering parameters representing two coupled resonators. The application of this method of synthesis is illustrated using two examples involving four and five-pole generalized Chebyshev filters implemented in substrate-integrated waveguide (SIW) technology. As a dispersive inverter, a parallel shorted stub with an additional septum was used. The septum lends greater flexibility to the dimensional synthesis, in that it increases the allowable range of the coupling coefficients. The measured and simulated results are in excellent agreement, which confirms the validity of the proposed approach.
Citation
Natalia Leszczynska, Lukasz Szydlowski, and Michal Mrozowski, "A Novel Synthesis Technique for Microwave Bandpass Filters with Frequency-Dependent Couplings," Progress In Electromagnetics Research, Vol. 137, 35-50, 2013.
doi:10.2528/PIER13011007
References

1. Xu, Z., J. Guo, C. Qian, and W.-B. Dou, "A novel quasi-elliptic waveguide transmit reject filter for Ku-band VSAT transceivers," Progress In Electromagnetics Research, Vol. 117, 393-407, 2011.

2. Kuo, J.-T., S.-C. Tang, and S.-H. Lin, "Quasi-elliptic function bandpass filter with upper stopband extension and high rejection level using cross-coupled stepped-impedance resonators," Progress In Electromagnetics Research, Vol. 114, 395-405, 2011.

3. Cameron, R. J., "Advanced coupling matrix synthesis techniques for microwave filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No. 1, 1-10, 2003.
doi:10.1109/TMTT.2002.806937

4. Lamecki, A., P. Kozakowski, and M. Mrozowski, "Fast synthesis of coupled-resonator filters," IEEE Microwave and Wireless Components Letters, Vol. 14, 174-176, 2004.
doi:10.1109/LMWC.2004.827111

5. Kozakowski, P., A. Lamecki, P. Sypek, and M. Mrozowski, "Eigenvalue approach to synthesis of prototype filters with source/load coupling," IEEE Microwave and Wireless Components Letters, Vol. 15, 98-100, 2005.
doi:10.1109/LMWC.2004.842838

6. Amari, S. and J. Bornemann, "Using frequency-dependent coupling to generate finite attenuation poles in direct-coupled resonator bandpass filters," IEEE Microwave and Guided Wave Letters, Vol. 9, No. 19, 404-406, 1999.
doi:10.1109/75.798030

7. Amari, S., J. Bornemann, W. Menzel, and F. Alessandri, "Diplexer design using pre-synthesized waveguide filters with strongly dispersive inverters," 2001 IEEE MTT-S International Microwave Symposium Digest, Vol. 3, 1627-1630, 2001.

8. Lamecki, A., P. Kozakowski, and M. Mrozowski, "Efficient implementation of the Cauchy method for automated CAD model construction," IEEE Microwave and Wireless Components Letters, Vol. 13, No. 7, 268-270, 2003.
doi:10.1109/LMWC.2003.815185

9. Dziekonski, A., A. Lamecki, and M. Mrozowski, "GPU acceleration of multilevel solvers for analysis of microwave components with finite element method," IEEE Microwave and Wireless Components Letters, Vol. 21, No. 1, 1-3, 2011.
doi:10.1109/LMWC.2010.2089974

10. Dziekonski, A., A. Lamecki, and M. Mrozowski, "A memory efficient and fast sparse matrix vector product on a GPU," Progress In Electromagnetics Research, Vol. 116, 49-63, 2011.

11. Dziekonski, A., A. Lamecki, and M. Mrozowski, "Tuning a hybrid GPU-CPU V-cycle multilevel preconditioner for solving large real and complex systems of FEM equations," Antennas and Wireless Propagation Letters, Vol. 10, 619-622, 2011.
doi:10.1109/LAWP.2011.2159769

12. Dziekonski, A., P. Sypek, A. Lamecki, and M. Mrozowski, "Finite element matrix generation on a GPU," Progress In Electromagnetics Research, Vol. 128, 249-265, 2012.

13. Matthaei, G. L., L. Young, and E. M. T. Jones, Microwave Filters, Impedance-matching Networks and Coupling Structures, Artech House, 1985.

14. Szydlowski, L., N. Leszczynska, A. Lamecki, and M. Mrozowski, "A substrate integrated waveguide (SIW) bandpass filter in a box configuration with frequency-dependent coupling," IEEE Microwave and Wireless Components Letters, Vol. 22, No. 11, 556-558, 2012.
doi:10.1109/LMWC.2012.2221690

15. Zhang, Q. L., W. Y. Yin, and S. He, "Evanescent-mode substrate integrated waveguide (SIW) filters implemented with complementary split ring resonators," Progress In Electromagnetics Research, Vol. 111, 419-432, 2011.
doi:10.2528/PIER10110307

16. Wu, L. S., J. F. Mao, W. Shen, and W. Y. Yin, "Extended doublet bandpass filters implemented with microstrip resonator and full-/half-mode substrate integrated cavities," Progress In Electromagnetics Research, Vol. 108, 433-447, 2010.
doi:10.2528/PIER10081206

17. Wang, Z. G., X. Q. Li, S. P. Zhou, B. Yan, R. M. Xu, and W. G. Lin, "Half mode substrate integrated folded waveguide (HMSIFW) and partial H-plane bandpass filter," Progress In Electromagnetics Research, Vol. 101, 203-216, 2010.
doi:10.2528/PIER10011201

18. Szydlowski, L., A. Lamecki, and M. Mrozowski, "Design of microwave lossy filter based on substrate integrated waveguide (SIW)," IEEE Microwave and Wireless Components Letters, Vol. 21, No. 5, 249-251, May 2011.
doi:10.1109/LMWC.2011.2119471

19. Jedrzejewski, A., N. Leszczynska, L. Szydlowski, and M. Mrozowski, "Zero-pole approach to computer aided design of in-line SIW filters with transmission zeros," Progress In Electromagnetics Research, Vol. 131, 517-533, 2012.

20. Szydlowski, L., A. Lamecki, and M. Mrozowski, "Coupled-resonator filters with frequency-dependent couplings: Coupling matrix synthesis," IEEE Microwave and Wireless Components Letters, Vol. 22, No. 6, 312-314, 2012.
doi:10.1109/LMWC.2012.2197386

21. Kozakowski, P. and M. Mrozowski, "Automated CAD of coupled resonator filters," IEEE Microwave and Wireless Components Letters, Vol. 12, No. 12, 470-472, 2002.
doi:10.1109/LMWC.2002.805932

22. Gustavsen, B. and A. Semlyen, "Rational approximation of frequency domain responses by vector fitting," IEEE Transactions Magnetics, Vol. 39, No. 6, 3581-3586, 2003.
doi:10.1109/TMAG.2003.819447