Vol. 130
Latest Volume
All Volumes
PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-08-21
A Resonance Tunable and Durable Lspr Nano-Particle Sensor: Al2O3 Capped Silver Nano-Disks
By
Progress In Electromagnetics Research, Vol. 130, 429-446, 2012
Abstract
Localized surface plasmon resonance (LSPR) biosensors are employed to detect target biomolecules which have particular resonance wavelengths. Accordingly, tunability of the LSPR wavelength is essential in designing LSPR devices. LSPR devices employing silver nano-particles present better efficiencies than those using other noble metals such as gold; however, silver nano-particles are easily oxidized when they come in contact with liquids, which is inevitable in biosensing applications. To attain both durability and tunabilty in a LSPR biosensor, this paper proposes alumina (AL2O3) capped silver nano-disks. It is shown that through controlling the thickness of the cap, the LSPR resonance frequency can be finely tuned over a wide range; and moreover, the cap protects silver nano-particles from oxidation and high temperature.
Citation
Daryoush Mortazavi, Abbas Z. Kouzani, and Kristy C. Vernon, "A Resonance Tunable and Durable Lspr Nano-Particle Sensor: Al2O3 Capped Silver Nano-Disks," Progress In Electromagnetics Research, Vol. 130, 429-446, 2012.
doi:10.2528/PIER12052911
References

1. Ishimaru, A., S. Jaruwatanadilok, and Y. Kuga, "Generalized surface plasmon resonance sensors using metamaterials and negative index materials," Progress In Electromagnetic Research, Vol. 51, 139-152, 2005.
doi:10.2528/PIER04020603

2. Han, L., S. Chen, A. Schulzgen, Y. Zeng, F. Song, J.-G. Tian, and N. Peyghambarian, "Calculation and optimization of electromagnetic resonances and local intensity enhancements for plasmon metamaterials with sub-wavelength double-slots," Progress In Electromagnetic Research, Vol. 113, 161-177, 2011.

3. Cao, P., X. Zhang, W.-J. Kong, L. Cheng, and H. Zhang, "Super resolution enhancement for the superlens with anti-reflection and phase control coatings via surface plasmons modes of asymmetric structure," Progress In Electromagnetic Research, Vol. 119, 191-206, 2011.
doi:10.2528/PIER11053010

4. Liu, X., J. Lin, T. F. Jiang, Z. F. Zhu, Q. Q. Zhan, J. Qian, and S. He, "Surface plasmon properties of hollow AuAg alloyed triangular nanoboxes and its applications in SERS imaging and potential drug delivery ," Progress In Electromagnetic Research, Vol. 128, 35-53, 2012.
doi:10.2528/PIER11112406

5. Zhao, J., K. Li, F. Kong, and L.-G. Du, "Enhancement of blue light emission using surface plasmons coupling with quantum wells," Progress In Electromagnetic Research, Vol. 108, 293-306, 2010.
doi:10.2528/PIER10072906

6. Nath, N. and A. Chilkoti, "A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface," Analytical Chemistry, Vol. 74, 2002.
doi:10.1021/ac015657x

7. Samantha, S. and J. Bokatzian, Surface plasmon resonance: Principles and applications, Graduate Student Seminar Series, Department of Chemistry, University of Alabama, 2008.

8. Homola, J., et al. "Multi-analyte surface plasmon resonance biosensing," Methods, Vol. 37, 26-36, 2005.
doi:10.1016/j.ymeth.2005.05.003

9. Davis, T. J., K. C. Vernon, and D. E. Gómez, "Designing plasmonic systems using optical coupling between nanoparticles," Physical Review B, Vol. 79, 155423-155432, 2009.
doi:10.1103/PhysRevB.79.155423

10. Mortazavi, D., A. Z. Kouzani, and A. Kaynak, "Nano-plasmonic biosensors: A review," IEEE/ICME International Conference on Complex Medical Engineering (CME), ICMEA'11, Harbin, China, 2011.

11. Haynes, C. L., A. D. McFarland, and R. P. van Duyne, "Surface-enhanced Raman spectroscopy," Analytical Chemistry, Vol. 77, 339-346, Sep. 1, 2005.

12. Maier, S. A. and H. A. Atwater, "Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures," J. of Applied Physics, Vol. 98, 2005.
doi:10.1063/1.1951057

13. Link, S. and M. A. El-Sayed, "Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods ," J. Physical Chemistry B, Vol. 103, 8410-8426, 1999.
doi:10.1021/jp9917648

14. Zhang, S., et al. "Substrate-induced fano resonances of a plasmonic nanocube: A route to increased-sensitivity localized surface Plasmon resonance sensors revealed ," Nano Letters, Vol. 11, 1657-1663, 2011.
doi:10.1021/nl200135r

15. Stuart, D. A., et al. "Glucose sensing using near-infrared surface-enhanced raman spectroscopy: Gold surfaces, 10-day stability, and improved accuracy," Analytical Chemistry, Vol. 77, 4013-4019, 2005.
doi:10.1021/ac0501238

16. Sekhon, J. S. and S. S. Verma, "Rational selection of nanorod plasmons: Material, size, and shape dependence mechanism for optical sensors," Plasmonics, 1-7, 2012.

17. Lantiat, D., et al. "Evidence for capping-layer effects on the morphology and plasmon excitation of Ag nanoparticles," J. of Applied Physics, Vol. 102, 2007.
doi:10.1063/1.2821914

18. Mortazavi, D., A. Z. Kouzani, A. Kaynak, and W. Duan, "Developing LSPR design guidlines," Progress In Electromagnetic Research, Vol. 126, 203-235, 2012.
doi:10.2528/PIER12011810

19. Niu, J., et al. "Graphene induced tunability of the surface plasmon resonance," Applied Physics Letters, Vol. 100, 2012.

20. Elert, G., Resistivity of aluminum oxide, The Physics Factbook, E. Huang (ed.), http://hypertextbook.com/facts/2006/EuniceHuang.shtml, 2006.

21. Whitney, A. V., et al. "Localized surface plasmon resonance nanosensor: A high-resolution distance-dependence study using atomic layer deposition," J. Physical Chemistry B, Vol. 109, 20522-20528, 2005.
doi:10.1021/jp0540656

22. Zhang, X., et al. "Ultrastable substrates for surface-enhanced Raman spectroscopy: Al2O3 overlayers fabricated by atomic layer deposition yield improved anthrax biomarker detection," American Chemical Society, Vol. 128, 10304-10309, 2006.
doi:10.1021/ja0638760

23. Mortazavi, D., A. Z. Kouzani, and A. Kaynak, "Investigating nanoparticle-substrate interaction in LSPR biosensing using the image-charge theory," EMBC'12, San Diego, USA, Aug. 2012.

24. Davis, T. J., D. E. Gomez, and K. C. Vernon, "Simple model for the hybridization of surface plasmon resonances in metallic nanoparticles," Nano Letters, Vol. 10, 2618-2625, 2010.
doi:10.1021/nl101335z

25. Vernon, K. C., et al. "Influence of particle-substrate interaction on localized plasmon resonances," Nano Letters, Vol. 10, 2080-2086, 2010.
doi:10.1021/nl100423z

26. Gómez, D. E., K. C. Vernon, and T. J. Davis, "Symmetry effects on the optical coupling between plasmonic nanoparticles with applications to hierarchical structures," Physical Review B, Vol. 81, 075414-423, 2010.

27. Mishchenko, M. I., L. D. Travis, and J. W. Hovenier, Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications, Academic Press, 2000.

28. Yamaguchi, T., S. Yoshida, and A. Kinbara, "Optical effect of the substrate on the anomalous absorption of aggregated silver films," Thin Solid Films, Vol. 21, 173-187, 1974.
doi:10.1016/0040-6090(74)90099-6

29. Lee, B., et al. "Review on subwavelength confinement of light with plasmonics," J. of Modern Optics, Vol. 57, 1479-1497, 2010.
doi:10.1080/09500340.2010.506985

30. Petryayeva, E. and U. J. Krull, "Localized surface plasmon resonance: Nanostructures, bioassays and biosensing --- A review," Analytica Chimica Acta, Vol. 706, 8-24, 2011.
doi:10.1016/j.aca.2011.08.020

31. Taflove, A., Computational Electrodynamics: The Finite-difference Time-domain Method, Artech House, London, Boston, 1995.

32. Vaccari, A., A., A. Cala' Lesina, L. Cristoforetti, and R. Pontalti, "Parallel implementation of a 3D subgriding FDTD algorithm for large simulations," Progress In Electromagnetic Research, Vol. 120, 263-292, 2011.

33. Lee, K. H., I. Ahmed, R. S. M. Goh, E. H. Khoo, E. P. Li, and T. G. G. Hung, "Implementation of the FDTD method based on Lorentz-Drude dispersive model on GPU fro plasmonics applications ," Progress In Electromagnetic Research, Vol. 116, 441-456, 2011.

34. Singh, R., et al. "Sharp fano resonances in THz metamaterials," Optics Express, Vol. 19, 6312-6319, 2011.
doi:10.1364/OE.19.006312

35. Zhang, W., B. Gallinet, and O. J. F. Martin, "Symmetry and selection rules for localized surface plasmon resonances in nanostructures," Physical Review B, Vol. 81, 233407-233410, 2010.
doi:10.1103/PhysRevB.81.233407

36. Fan, X., et al. "Sensitive optical biosensors for unlabeled targets: A review," Analytica Chimica Acta, Vol. 620, 8-26, 2008.
doi:10.1016/j.aca.2008.05.022

37. Lahav, A., M. Auslender, and I. Abdulhalim, "Sensitivity enhancement of guided-wave surface-plasmon resonance sensors," Optics Letters, Vol. 33, 2539-2541, 2008.
doi:10.1364/OL.33.002539

38. Shalabney, A. and I. Abdulhalim, "Sensitivity-enhancement methods for surface plasmon sensors," Laser & Photonics Reviews, Vol. 5, 571-606, 2011.
doi:10.1002/lpor.201000009

39. Kang, M., et al. "Protein capture in silica nanotube membrane 3-D microwell arrays," Anal. Chem., Vol. 77, 6243-6249, 2005.
doi:10.1021/ac0508907

40. Luo, Z., T. Suyama, X. Xu, and Y. Okuno, "A grating-based plasmon biosensor with high resolution ," Progress In Electromagnetic Research, Vol. 118, 527-539, 2011.
doi:10.2528/PIER11060103

41. Lide, D. R., CRC Handbook of Chemistry and Physics, 87th Ed., Taylor and Francis Group, Boca Raton, FL, 2007.

42. Jin, Y., D. Gao, and L. Gao, "Plasmonic resonant light scattering by a cylinder with radial anisotropy," Progress In Electromagnetic Research, Vol. 106, 335-347, 2010.
doi:10.2528/PIER10060601

43. Kuwata, H., et al. "Resonant light scattering from metal nanoparticles: Practical analysis beyond Rayleigh approximation," Applied Physics Letters, Vol. 83, 4625-4627, 2003.
doi:10.1063/1.1630351

44. Mortazavi, D., et al. "Plasmon eignevalues as a function of nano-spheroids size and elongation ," Proceeding of ICMEA'12, Kobe, Japan, Jul. 2012.