Vol. 124
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-01-19
Nonlinear Modeling of Trapping and Thermal Effects on GaAs and GaN Mesfet/HEMT Devices
By
Progress In Electromagnetics Research, Vol. 124, 163-186, 2012
Abstract
A novel nonlinear model for MESFET/HEMT devices is presented. The model can be applied to low power (GaAs) and high power (GaN) devices with equal success. The model provides accurate simulation of the static (DC) and dynamic (Pulsed) I-V characteristics of the device over a wide bias and ambient temperature range (from -70ºC to +70ºC) without the need of an additional electro-thermal sub-circuit. This is an important issue in high power GaN HEMT devices where self-heating and current collapse due to traps is a more serious problem. The parameter extraction strategy of the new model is simple to implement. The robustness of the model when performing harmonic balance simulation makes it suitable for RF and microwave designers. Experimental results presented demonstrate the accuracy of the model when simulating both the small-signal and large-signal behavior of the device over a wide range of frequency, bias and ambient temperature operating points. The model described has been implemented in the Advanced Design System (ADS) simulator to validate the proposed approach without convergence problems.
Citation
Mohamed Chaibi, Tomas Fernandez, Asmae Mimouni, José Rodriguez-Tellez, Antonio Tazón, and Angel Mediavilla Sanchez, "Nonlinear Modeling of Trapping and Thermal Effects on GaAs and GaN Mesfet/HEMT Devices," Progress In Electromagnetics Research, Vol. 124, 163-186, 2012.
doi:10.2528/PIER11111102
References

1. Filicori, F., G. Vannini, A. Santarelli, A. M. Sanchez, A. Tazon, and Y. Newport, "Empirical modeling of low-frequency dispersive e®ects due to traps and thermal phenomena in III-V FET's," IEEE Trans. on Microwave Theory and Tech., Vol. 43, No. 12, 2972-2981, Dec. 1995.
doi:10.1109/22.475663

2. Rodriguez-Tellez, J., T. Fernandez, A. Mediavilla, and A. Tazon, "Characterization of thermal and frequency-dispersion effects in GaAs MESFET devices," IEEE Trans. on Microwave Theory and Tech., Vol. 49, No. 7, 1352-1355, Jul. 2001.
doi:10.1109/22.932259

3. Anholt, R. E. and S. E. Swirhun, "Experimental investigation of the temperature dependence of GaAs FET equivalent circuit," IEEE Trans. on Electron Devices, Vol. 39, No. 9, 2029-2036, Sep. 1992.
doi:10.1109/16.155874

4. Sang, L., Y. Xu, Y. Chen, Y. Guo, and R.-M. Xu, "Large signal equivalent circuit model for package ALGaN/GaN HEMT," Progress In Electromagnetics Research Letters, Vol. 20, 27-36, 2011.

5. Xu, Y., Y. Guo, L. Xia, and Y. Wu, "An support vector regression based nonlinear modeling method for SiC MESFET," Progress In Electromagnetics Research Letter, Vol. 2, 103-114, 2008.
doi:10.2528/PIERL07122102

6. Elsharkawy, R. R., E. S. El-Rabaie, M. Hindy, R. S. Ghoname, and M. I. Dessouky, "FET small-signal modelling based on the DST and MEL frequency ceptral coefficients," Progress In Electromagnetics Research B, Vol. 18, 185-204, 2009.
doi:10.2528/PIERB09082001

7. Lardizabal, S. M., A. S. Fernandez, and L. P. Dunleavy, "Temperature-dependent modeling of gallium arsenide MES-FET's," IEEE Trans. on Microwave Theory and Tech., Vol. 44, No. 3, 357-363, Mar. 1996.
doi:10.1109/22.486144

8. Selmi, L. and B. Ricco, "Modeling temperature effects in the DC I-V characteristics of GaAs MESFET's," IEEE Trans. on Electron Devices, Vol. 40, No. 2, 273-277, Feb. 1993.
doi:10.1109/16.182500

9. Hasumi, Y., N. Matsunaga, T. Oshima, and H. Kodera, "Characterization of the frequency dispersion of transconductance and drain conductance of GaAs MESFET," IEEE Trans. on Microwave Theory and Tech., Vol. 50, No. 10, 2032-2038, Oct. 2003.

10. Caddemi, A. and N. Donato, "Characterization techniques for temperature-dependent experimental analysis of microwave transistors," IEEE Trans. on Instrumentation and Meas., Vol. 52, No. 1, 85-91, Feb. 2003.
doi:10.1109/TIM.2003.809079

11. Deng, J., W. Wang, S. Halder, W. R. Curtice, J. C. M. Hwang, V. Adivarahan, and M. A. Khan, "Temperature-dependent RF large-signal model of GaN-based MOSHFETs," IEEE Trans. on Microwave Theory and Tech., Vol. 56, No. 12, 2709-2716, Dec. 2008.
doi:10.1109/TMTT.2008.2007083

12. Golio, J. M., M. G. Miller, G. N. Maracas, and D. A. Johnson, "Frequency-dependent electrical characteristics of GaAs MES-FET's," IEEE Trans. on Electron Devices, Vol. 37, No. 5, 1217-1227, May 1990.
doi:10.1109/16.108182

13. Roh, T., Y. Kim, Y. Suh, W. Park, and B. Kim, "A simple and accurate MESFET channel-current model including bias-dependent dispersion and thermal phenomena," IEEE Trans. on Microwave Theory and Tech., Vol. 45, No. 8, 1252-1255, Aug. 1997.
doi:10.1109/22.618416

14. Parker, A. E. and J. G. Rathmell, "Bias and frequency dependence of FET characteristics," IEEE Trans. on Microwave Theory and Tech., Vol. 51, No. 2, 588-592, Feb. 2003.
doi:10.1109/TMTT.2002.807819

15. Tirado, J. M., J. L. Sanchez-Rojas, and J. I. Izpura, "Trapping effects in the transient response of AlGaN/GaN HEMT devices," IEEE Trans. on Electron Devices, Vol. 54, No. 3, 410-417, Mar. 2007.
doi:10.1109/TED.2006.890592

16. Faqir, M., G. Verzellesi, A. Chini, F. Fantini, F. Danesin, G. Meneghesso, E. Zanoni, and C. Dua, "Mechanisms of RF current collapse in AlGaN-GaN high electron mobility transistors," IEEE Trans. on Device and Materials Reliability, Vol. 8, No. 2, 240-247, Jun. 2008.
doi:10.1109/TDMR.2008.922017

17. Binari, S. C., K. Ikossi, J. A. Roussos, W. Kruppa, D. Park, H. B. Dietrich, D. D. Koleske, A. E. Wickenden, and R. L. Henry, "Trapping effects and microwave power performance in AlGaN/GaN HEMTs," IEEE Trans. on Electron Devices, Vol. 48, No. 3, 465-471, Mar. 2001.
doi:10.1109/16.906437

18. Joh, J., J. A. del Alamo, and J. Jimenez, "A simple current collapse measurement technique for GaN high-electron mobility transistors," IEEE Electron Device Letters, Vol. 29, No. 7, 665-667, Jul. 2008.
doi:10.1109/LED.2008.2000919

19. Meneghesso, G., G. Verzellesi, R. Pierobon, F. Rampazzo, A. Chini, U. K. Mishra, C. Canali, and E. Zanoni, "Surface-related drain current dispersion effects in AlGaN-GaN HEMTs," IEEE Trans. on Electron Devices, Vol. 51, No. 10, 1554-1561, Oct. 2004.
doi:10.1109/TED.2004.835025

20. Angelov, I., L. Bengtsson, and M. Garcia, "Extensions of the chalmers nonlinear HEMT and MESFET model," IEEE Trans. on Microwave Theory and Tech., Vol. 44, No. 10, 1664-1674, Oct. 1996.
doi:10.1109/22.538957

21. Curtice, W. R., "A MESFET model for use in the design of GaAs integrated circuits," IEEE Trans. on Microwave Theory and Tech., Vol. 28, No. 5, 448-456, May 1980.
doi:10.1109/TMTT.1980.1130099

22. Statz, H., P. Newman, I. W. Smith, R. A. Pucel, and H. A. Haus, "GaAs FET device and circuit simulation in SPICE," IEEE Trans. on Electron Devices, Vol. 34, No. 2, 160-169, Feb. 1987.
doi:10.1109/T-ED.1987.22902

23. Materka, A. and T. Kacprzak, "Computer calculation of large-signal GaAs FET amplifier characteristics," IEEE Trans. on Microwave Theory and Tech., Vol. 33, No. 2, 129-135, Feb. 1985.
doi:10.1109/TMTT.1985.1132960

24. Roff , C., J. Benedikt, P. J. Tasker, D. J. Wallis, K. P. Hilton, J. O. Maclean, D. G. Hayes, M. J. Uren, and T. Martin, "Analysis of DC-RF dispersion in AlGaN/GaN HFETs using RF waveform engineering," IEEE Trans. on Electron Devices, Vol. 56, No. 1, 13-18, Jan. 2009.
doi:10.1109/TED.2008.2008674

25. Zhao, J. H., R. Hwang, and S. Chang, "On the characterization of surface states and deep traps in GaAs MESFETs," Solid-State Electronics, Vol. 36, No. 12, 1665-1672, Dec. 1993.
doi:10.1016/0038-1101(93)90211-8

26. Tirado, J. M., J. L. Sanchez-Rojas, and J. I. Izpura, "2D simulation of static surface states in AlGaN/GaN HEMT and GaN MESFET devices," Semiconductor Science and Technology, Vol. 20, 864-869, 2005..
doi:10.1088/0268-1242/20/8/042

27. Braga, N. and R. Mickevicius, "Simulation of gate lag and current collapse in gallium nitride field-effect transistors," Applied Physics Letters, Vol. 85, No. 20, 4780-4782, Nov. 2004.
doi:10.1063/1.1823018

28. Horio, K. and T. Yamada, "Two-dimensional analysis of surface-state effects on turn-on characteristics in GaAs MESFETs," IEEE Trans. on Electron Devices, Vol. 46, No. 4, 648-655, Apr. 1999.
doi:10.1109/16.753696

29. Zhang, L., L. F. Lester, A. G. Baca, R. J. Shul, P. C. Chang, C. G. Willison, U. K. Mishra, S. P. Denbaars, and J. C. Zolper, "Epitaxially-grown GaN junction field effect transistors," IEEE Trans. on Electron Devices, Vol. 47, No. 3, 507-511, Mar. 2000.
doi:10.1109/16.824716

30. Bradley, S. T., A. P. Young, L. J. Brillson, M. J. Murphy, and W. J. Schaff, "Role of barrier and buffer layer defect states in AlGaN/GaN HEMT structures," Journal of Electronic Materials, Vol. 30, No. 3, 123-128, Mar. 2001.
doi:10.1007/s11664-001-0004-4

31. Koley, G., V. Tilak, L. F. Eastman, and M. G. Spencer, "Slow transients observed in AlGaN/GaN HFETs: Effects of SiNx passivation and UV illumination," IEEE Trans. on Electron Devices, Vol. 50, No. 4, 886-893, Apr. 2003.
doi:10.1109/TED.2003.812489

32. Charache, G. W., S. Akram, E. W. Maby, and I. B. Bhat, "Surface passivation of GaAs MESFET's," IEEE Trans. on Electron Devices, Vol. 44, No. 11, 1837-1842, Nov. 1997.
doi:10.1109/16.641350

33. Tenedorio, J. G. and P. A. Terzian, "Effects of Si3N4, SiO, and polyimide surface passivations on GaAs MESFET amplifier RF stability," IEEE Electron Device Letters, Vol. 5, No. 6, 199-202, Jun. 1984.
doi:10.1109/EDL.1984.25886

34. Raffo, A., A. Santarelli, P. A. Traverso, G. Vannini, F. Palomba, F. Scappaviva, M. Pagani, and F. Filicori, "Accurate pHEMT nonlinear modeling in the presence of low-frequency dispersive effects," IEEE Trans. on Microwave Theory and Tech., Vol. 53, No. 11, 3449-3459, Nov. 2005.
doi:10.1109/TMTT.2005.859034

35. Koh, K., H.-M. Park, and S. Hong, "A spline large-signal FET model based on bias-dependent pulsed I-V measurement," IEEE Trans. on Microwave Theory and Tech., Vol. 50, No. 11, 2598-2603, Nov. 2002.
doi:10.1109/TMTT.2002.804509

36. Fernandez, T., Y. Newport, J. M. Zamanillo, A. Tazon, and A. Mediavilla, "Extracting a bias-dependent large signal MESFET model from pulsed I/V measurements," IEEE Trans. on Microwave Theory and Tech., Vol. 44, No. 3, 372-378, Mar. 1996.
doi:10.1109/22.486146

37. Jeon, K.-I., Y.-S. Kwon, and S.-C. Hong, "A frequency dispersion model of GaAs MESFET for large-signal applications," IEEE Microwave Guided Wave Lett., Vol. 7, No. 3, 78-80, Mar. 1997.
doi:10.1109/75.556038

38. Jarndal, A. and G. Kompa, "Large-signal model for AlGaN/GaN HEMTs accurately predicts trapping- and self-heating-induced dispersion and intermodulation distortion," IEEE Trans. on Electron Devices, Vol. 54, No. 11, 2830-2836, Nov. 2007.
doi:10.1109/TED.2007.907143

39. Jardal, O., F. D. Groote, T. Reveyrand, J.-C. Jacquet, C. Charbonniaud, J.-P. Teyssier, D. Floriot, and R. Quere, "An electrothermal model for AlGaN/GaN power HEMTs including trapping effects to improve large-signal simulation results on high VSWR," IEEE Trans. on Microwave Theory and Tech., Vol. 55, No. 12, 2660-2669, Dec. 2007.
doi:10.1109/TMTT.2007.907141

40. Yuk, K. S. and G. R. Branner, "An empirical large-signal model for SiC MESFETs with sefl-heating thermal model," IEEE Trans. on Microwave Theory and Tech., Vol. 56, No. 11, 2671-2680, Nov. 2008.
doi:10.1109/TMTT.2008.2005922

41. Chaibi, M., T. Fernamdez, J. Rodriguez-Tellez, J. L. Cano, and M. Aghoutane, "Accurate large-signal single current source thermal model for GaAs MESFET/HEMT," Electronics Lett., Vol. 43, No. 14, 775-777, Jul. 2007.
doi:10.1049/el:20071111

42. Jastrzebski, A. K., "Characterisation and modelling of temperature and dispersion effects in power MESFETs," Proc. 24rd European Microwave Conf., 1319-1324, Cannes, France, Sep. 1994.

43. Fernandez, T., J. A. Garcia, A. Tazon, A. Mediavilla, J. C. Pedro, and J. L. Garcia, "Accurately modeling the drain to source current in recessed gate P-HEMT devices," IEEE Electron Device Lett., Vol. 20, No. 11, 557-559, Nov. 1999.
doi:10.1109/55.798042

44. Cabral, P. M., J. C. Pedro, and N. B. Carvalho, "Nonlinear device model of microwave power GaN HEMTs for high power-amplifier design," IEEE Trans. on Microwave Theory and Tech., Vol. 52, No. 11, 2585-2592, Nov. 2004.
doi:10.1109/TMTT.2004.837196

45. Dambrine, G., A. Cappy, F. Heliodore, and E. Playez, "A new method for determining the FET small-signal equivalent circuit," IEEE Trans. on Microwave Theory and Tech, Vol. 36, No. 7, 1151-1159, Jul. 1988.
doi:10.1109/22.3650

46. Tayrani, R., J. E. Gerber, T. Daniel, R. S. Pengelly, and U. L. Rhode, "A new and reliable direct parasitic extraction method for MESFETs and HEMTs," Proc. 23rd European Microwave Conf., 451-453, Madrid, Spain, Sep. 1993.
doi:10.1109/EUMA.1993.336593