1. Lim, H. B., N. T. Nhung, E. Li, and N. D. Thang, "Confocal microwave imaging for breast cancer detection: Delay-multiply-and-sum image reconstruction algorithm," IEEE Transactions on Biomedical Engineering, Vol. 55, No. 6, 1697-1704.
2. Fear, E. C., X. Li, S. C. Hagness, and M. A. Stuchly, "Confocal microwave imaging for breast tumor detection: Localization of tumors in three dimensions," IEEE Transactions on Biomedical Engineering, Vol. 49, No. 8, 812-822, 2002.
doi:10.1109/TBME.2002.800759
3. O'Halloran, M., M. Glavin, and E. Jones, "Channel-ranked beamformer for the early detection of breast cancer," Progress In Electromagnetic Research, Vol. 103, 153-168, 2010.
doi:10.2528/PIER10030902
4. Byrne, D., M. O'Halloran, M. Glavin, and E. Jones, "Channel-ranked beamformer for the early detection of breast cancer," Progress In Electromagnetic Research, Vol. 103, 153-168, 2010.
5. O'Halloran, M., M. Glavin, and E. Jones, "Rotating antenna microwave imaging system for breast cancer detection," Progress In Electromagnetic Research, Vol. 107, 203-217, 2010.
doi:10.2528/PIER10071002
6. Alshehri, S. A. and S. Khatun, "UWB imaging for breast cancer detection using neural networks," Progress In Electromagnetic Research C, Vol. 7, 79-93, 2009.
doi:10.2528/PIERC09031202
7. Byrne, D., M. O'Halloran, E. Jones, and M. Glavin, "Transmitter-grouping robust capon beamforming for breast cancer detection," Progress In Electromagnetic Research, Vol. 108, 401-416, 2010.
doi:10.2528/PIER10090205
8. Zhang, H., S. Y. Tan, and H. S. Tan, "A novel method for microwave breast cancer detection," Progress In Electromagnetics Research, Vol. 83, 413-434, 2008.
doi:10.2528/PIER08062701
9. Bindu, G., A. Lonappan, V. Thomas, C. K. Ananadan, and K. T. Mathew, "Active microwave imaging for breast cancer detection," Progress In Electromagnetic Research, Vol. 58, 149-169, 2006.
doi:10.2528/PIER05081802
10. Li, X., S. K. Davis, S. C. Hagness, D. W. Weide, and B. D. Veen, "Microwave imaging via space-time beam forming: Experimental investigation of tumor detection in multilayer breast phantoms," IEEE Trans. Microwave Theory Techniques, Vol. 52, No. 8, 1856-1865, 2004.
doi:10.1109/TMTT.2004.832686
11. Klemm, M., I. Craddock, J. Leendertz, A. Preece, and R. Benjamin, "Radar-based breast cancer detection using a hemispherical antenna array --- Experimental results," IEEE Transactions on Antennas and Propagation, Vol. 57, 1692-1704, 2009.
doi:10.1109/TAP.2009.2019856
12. Lazaro, A., D. Girbau, and R. Villarino, "Simulated and experimental investigation of microwave imaging using UWB," Progress In Electromagnetics Research, Vol. 94, 263-280, 2009.
doi:10.2528/PIER09061004
13. Lai, J. C., C. B. Soh, E. Gunawan, and K. S. Low, "Homogeneous and heterogeneous breast phantom for ultra-wideband microwave imaging applications," Progress In Electromagnetic Research, Vol. 100, 377-415, 2010.
14. Lazaro, A., D. Girbau, and R. Villarino, "Wavelet-based breast tumor localization technique using a UWB radar," Progress In Electromagnetic Research, Vol. 98, 75-95, 2009.
doi:10.2528/PIER09100705
15. Alshehri, S. A., S. Khatun, A. Jantan, R. S. A. Raja Abdullah, R. Mahmod, and Z. Awang, "Experimental breast tumor detection using NN-based UWB imaging," Progress In Electromagnetic Research, Vol. 111, 447-465, 2011.
doi:10.2528/PIER10110102
16. Sha, L., E. R. Ward, and B. Story, "A review of dielectric properties of normal and malignant breast tissue," Proceedings IEEE SoutheastCon, 457-462, Apr. 5-7, 2002.
17. Lazebnik, M., et al. "A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries," Phys. Med. Biol., Vol. 52, 6093-6115, IOP Publishing, Oct. 2007.
18. Rangayyan, R. M., N. M. El-Faramawy, J. E. Leo Desautels, and O. A. Alim, "Measures of acutance and shape for classification of breast tumor ," IEEE Transactions on Medical Imaging,, Vol. 16, No. 6, Dec. 1997.
doi:10.1109/42.650876
19. Conceicao, R. C., M. O'Halloran, E. Jones, and M. Glavin, "Investigation of classifiers for early-stage breast cancer based on radar target signatures ," Progress In Electromagnetic Research, Vol. 105, 295-311, 2010.
doi:10.2528/PIER10051904
20. Davis, S. K., B. D. van Veen, S. C. Hagness, and F. Kelcz, "Breast tumor characterization based on ultrawideband microwave backscatter," IEEE Transactions on Biomedical Engineering, Vol. 55, No. 1, Jan. 2008.
doi:10.1109/TBME.2007.900564
21. Insana, M. F., C. Pellot-Barakat, M. Sridhar, and K. K. Lindfors, "Viscoelastic imaging of breast tumor microenvironment with ultrasound," Journal of Mammary Gland Biology and Neoplasia, Vol. 9, No. 4, Oct. 2004.
22. Bindu, G. and K. T. Mathew, "Characterization of benign and malignant breast tissues using 2-D microwave tomographic imaging," Microwave and Optical Technology Letters, Vol. 49, No. 10, Oct. 2007.
23. O'Halloran, M., B. McGinley, R. C. Conceicao, F. Morgan, E. Jones, and M. Glavin, "Spiking neural networks for breast cancer classi¯cation in a dielectrically heterogeneous breast," Progress In Electromagnetics Research, Vol. 113, 413-428, 2011.
24. Hagness, S. C., A. Taflove, and J. E. Bridges, "Three dimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detection design of an antenna-array element," IEEE Transactions on Antennas and Propagation, Vol. 47, No. 5, May 1999.
doi:10.1109/8.774131
25. CST Microwave Studio, CST Inc., 2009.
26. Time Domain Corporation, Cummings Research Park, 330 Wynn Drive, Suite 300, Huntsville, AL 35805, USA .
27. Dielectric Constants of Common Materials http: //www.flowme-terdirectory.com/dielectric constant 01.html.