1. Stillinger, F. H., "Axiomatic basis for spaces with noninteger dimension," J. Math. Phys., Vol. 18, No. 6, 1224-1234, 1977.
doi:10.1063/1.523395
2. He, X., "Anisotropy and isotropy: A model of fraction-dimensional space," Solid State Commun., Vol. 75, 111-114, 1990.
doi:10.1016/0038-1098(90)90352-C
3. Muslih, S. and D. Baleanu, "Fractional multipoles in fractional space," Nonlinear Analysis: Real World Applications, Vol. 8, 198-203, 2007.
doi:10.1016/j.nonrwa.2005.07.001
4. Baleanu, D., A. K. Golmankhaneh, and A. K. Golmankhaneh, "On electromagnetic field in fractional space," Nonlinear Analysis: Real World Applications, Vol. 11, No. 1, 288-292, 2010.
doi:10.1016/j.nonrwa.2008.10.058
5. Tarasov, V. E., "Electromagnetic fields on fractals," Modern Phys. Lett. A, Vol. 21, No. 20, 1587-1600, 2006.
doi:10.1142/S0217732306020974
6. Palmer, C. and P. N. Stavrinou, "Equations of motion in a noninteger-dimension space," J. Phys. A, Vol. 37, 6987-7003, 2004.
doi:10.1088/0305-4470/37/27/009
7. Mandelbrot, B., The Fractal Geometry of Nature, W. H. Freeman, New York, 1983.
8. Willson, K. G., "Quantum field-theory, models in less than 4 dimensions," Phys. Rev. D, Vol. 7, No. 10, 2911-2926, 1973.
doi:10.1103/PhysRevD.7.2911
9. Zeilinger, A. and K. Svozil, "Measuring the dimension of space-time," Phys. Rev. Lett., Vol. 54, No. 24, 2553-2555, 1985.
doi:10.1103/PhysRevLett.54.2553
10. Miller, K. S. and B. Ross, An Introduction to the Fractional Integrals and Derivatives-theory and Applications, Gordon and Breach, Longhorne, PA, 1993.
11. Engheta, N., "Fractional curl operator in electromagnetics," Microwave Opt. Tech. Lett., Vol. 17, 86-91, 1998.
doi:10.1002/(SICI)1098-2760(19980205)17:2<86::AID-MOP4>3.0.CO;2-E
12. Naqvi, Q. A. and A. A. Rizvi, "Fractional dual solutions and corresponding sources," Progress In Electromagnetics Research, Vol. 25, 223-238, 2000.
doi:10.2528/PIER99051801
13. Engheta, N., "Use of fractional integration to propose some Fractional" solutions for the scalar Helmholtz equation," Progress In Electromagnetics Research, Vol. 12, 107-132, 1996.
14. Zubair, M., M. J. Mughal, and Q. A. Naqvi, "The wave equation and general plane wave solutions in fractional space," Progress In Electromagnetics Research Letters, Vol. 19, 137-146, 2010.
15. Zubair, M., M. J. Mughal, Q. A. Naqvi, and A. A. Rizvi, "Differential electromagnetic equations in fractional space,", Vol. 114, 255-269, 2011.
16. Hussain, A. and Q. A. Naqvi, "Fractional rectangular impedance waveguide," Progress In Electromagnetics Research, Vol. 96, 101-116, 2009.
doi:10.2528/PIER09060801
17. Naqvi, Q. A., "Planar slab of chiral nihility metamaterial backed by fractional dual/PEMC interface," Progress In Electromagnetics Research, Vol. 85, 381-391, 2008.
doi:10.2528/PIER08081201
18. Naqvi, Q. A., "Fractional dual interface in chiral nihility medium," Progress In Electromagnetics Research Letters, Vol. 8, 135-142, 2009.
doi:10.2528/PIERL09032405
19. Naqvi, Q. A., "Fractional dual solutions in grounded chiral nihility slab and their effect on outside fields," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 5-6, 773-784, 2009.
doi:10.1163/156939309788019958
20. Naqvi, A., S. Ahmed, and Q. A. Naqvi, "Perfect electromagnetic conductor and fractional dual interface placed in a chiral nihility medium," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 14-15, 1991-1999, 2010.