Vol. 113
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2011-02-06
Protection of Naval Systems Against Electromagnetic Effects Due to Lightning
By
Progress In Electromagnetics Research, Vol. 113, 333-349, 2011
Abstract
This study investigates possible lightning threats to naval crafts, especially those sailing in the shallow waters of tropical oceans where thunderstorms prevail throughout the year and Far-East Asian region where dangerous positive lightning is a significant characteristic in winter thunderstorms. It is empathized that sea water acts as nearly a perfect conductor thus lightning electromagnetic transients propagate over the sea with almost zero attenuation of amplitude and high frequency components intact. The ratio between the peak electric fields at 5 km from the lightning channel, after fields propagate over dry soil and over sea water is 0.75. The ratio between the peak electric field derivatives under the same conditions is 0.1. Such small ratios are observed in the magnetic fields and their time derivatives as well. Apart from the conductivity, the topological irregularities of the plane over which propagation takes place also contribute to further attenuation of fields and their time derivatives. This makes marine naval systems more vulnerable to lightning induced effects than their ground-based counterparts. The paper discusses in detail the lapses of existing naval standards in the defense of electrical and electronic systems against both direct lightning currents and induced effects of nearby lightning. Consequently we propose the development of a dedicated standard for the lightning protection of naval systems, with the inclusion of several significant recommendations specified in this paper.
Citation
Chandima Gomes, and Mohd Zainal Abidin Ab Kadir, "Protection of Naval Systems Against Electromagnetic Effects Due to Lightning," Progress In Electromagnetics Research, Vol. 113, 333-349, 2011.
doi:10.2528/PIER10111302
References

1. Nakahori, K., T. Egawa, and H. Mitani, "Characteristics of winter lightning in Hokuriku district," IEEE Transactions on Power Apparatus and System, Vol. 101, No. 11, 4407-4412, Nov. 1982.
doi:10.1109/TPAS.1982.317407

2. Miyake, K., T. Suzuki, M. Takashima, M. Takuma, and T. Tada, "Winter lightning on Japan Sea coast-lightning striking frequency to tall structures," Power Delivery, Vol. 5, No. 3, 1370-1377, Jul. 1990.
doi:10.1109/61.57979

3. Yokoyama, S., K. Miyake, T. Suzuki, and S. Kanao, "Winter lightning on Japan Sea coast --- development of measuring system on progressing feature of lightning discharge," Power Delivery, Vol. 5, No. 3, 1418-1425, Jul. 1990.
doi:10.1109/61.57984

4. Miyake, K., T. Suzuki, and K. Shinjou, "Characteristics of winter lightning on Japan Sea coast," Power Delivery, Vol. 7, No. 3, 1450-1457, Jul. 1992.
doi:10.1109/61.141864

5. Asakawa, A., K. Miyake, S. Yokoyama, T. Shindo, T. Yokota, and T. Sakai, "Two types of lightning discharges to a high stack on the coast of the sea of Japan in winter," Power Delivery, Vol. 12, No. 3, 1222-1231, Jul. 1997.
doi:10.1109/61.636953

6. Lim, E. and T.-Y. Lee, "Statistical characteristics of lightning over the Korean Peninsula for 1996-2000," Asia-Pacific J. Atmos. Sci., Vol. 41, 41-55, 2005.

7. Kar, S. K., Y.-A. Liou, and K.-J. Ha, "Characteristics of cloud-to-ground lightning activity over Seoul, South Korea in relation to an urban effect," Ann. Geophys., Vol. 25, 2113-2118, 2007.
doi:10.5194/angeo-25-2113-2007

8. Kuk, B. J., J. S. Ha, H. I. Kima, and H. K. Leea, "Statistical characteristics of ground lightning flashes over the Korean peninsula using cloud-to-ground lightning data from 2004-2008," Atmospheric Research, Vol. 95, No. 2-3, 123-135, 2010.
doi:10.1016/j.atmosres.2009.08.014

9. Gomes, C., "On the nature of lightning flashes: With special attention to the initiation, modelling and remote sensing of return strokes,", Ph.D. Thesis, University of Colombo/Uppsala University, 1999.

10. Sabaa, M. M. F., O. Pinto, Jr., N. N. Solorzano, and A. Eybert-Berard, "Lightning current observation of an altitude-triggered flash," Atmospheric Research, Vol. 76, 402-411, 2005.
doi:10.1016/j.atmosres.2004.11.005

11. Zhang, Q., X. Qie, Z. Wang, T. Zhang, Y. Zhao, J. Yang, and X. Kong, "Characteristics and simulation of lightning current waveforms during one artificially triggered lightning," Atmospheric Research, Vol. 91, 387-392, 2009.
doi:10.1016/j.atmosres.2008.04.015

12. Berger, K., R. B. Anderson, and H. Kröninger, "Parameters of lightning flashes," CIGRE Electra, Vol. 41, 23-37, 1975.

13. Anderson, R. B. and A. J. Eriksson, "Lightning parameters for engineering application," CIGRE Electra, Vol. 69, 65-102, 1980.

14. Gomes, C. and V. Cooray, "Electromagnetic transients in radio/microwave bands and surge protection devices," Progress In Electromagnetics Research, Vol. 108, 101-130, 2010.
doi:10.2528/PIER10070304

15. Uman, M. A., D. K. McLain, and E. P. Krider, "The electromagnetic radiation from a finite antenna," Am. J. Phys., Vol. 43, 33-38, 1975.
doi:10.1119/1.10027

16. Kannu, P. D. and M. J. Thomas, "Influence of lightning electric field components on the induced voltages on a power distribution line," Electric Power Systems Research, Vol. 64, No. 3, 247-255, 2003.
doi:10.1016/S0378-7796(02)00191-8

17. Nucci, C. A., F. Rachidi, M. Ianoz, and C. Mazzetti, "Lightning-induced voltages on overhead lines," IEEE Trans. Electromag. Compat., Vol. 35, No. 1, 75-85, 1993.
doi:10.1109/15.249398

18. Fernando, M. and V. Cooray, "Propagation effects on the electric field time derivatives generated by return strokes in lightning flashes," Journal of Atmospheric and Solar-Terrestrial Physics, Vol. 69, No. 12, 1388-1396, 2007.
doi:10.1016/j.jastp.2007.03.013

19. Cooray, V., M. Fernando, T. Sörensen, T. Götschl, and A. Pedersen, "Propagation of lightning generated transient electromagnetic fields over finitely conducting ground," J. Atmos. Terres. Phy., Vol. 62, 583-600, 2000.
doi:10.1016/S1364-6826(00)00008-0

20. Gardner, R. L., "Effects of propagation on lightning induced transient fields," Radio Sci., Vol. 16, 337-384, 1981.

21. Cooray, V. and S. Lundquist, "Effects of propagation on the risetime and the initial peaks of radiation fields from return strokes," Radio Sci., Vol. 18, 409-415, 1983.
doi:10.1029/RS018i003p00409

22. Le Vine, D. M., L. Gesell, and M. Kao, "Radiation from lightning return strokes over a finitely conducting earth," J. Geophys. Res., Vol. 91, 11897-11908, 1986.
doi:10.1029/JD091iD11p11897

23. Cooray, V., "Effects of propagation on the return stroke radiation fields," Radio Sci., Vol. 22, 757-768, 1987.
doi:10.1029/RS022i005p00757

24. Ming, Y. and V. Cooray, "Propagation effects caused by a rough ocean surface on the electromagnetic fields generated by lightning return strokes," Radio Sci., Vol. 29, 73-85, 1994.
doi:10.1029/93RS02085

25. Cooray, V. and Y. Ming, "Propagation effects on the lightning generated electromagnetic fields for homogeneous and mixed sea land paths," J. Geophys. Res., Vol. 99, 10641-10652, 1994.
doi:10.1029/93JD03277

26. Cooray, V., "Propagation effects on radiation field pulses generated by cloud lightning flashes," Journal of Atmospheric and Solar-Terrestrial Physics, Vol. 69, 1397-1406, 2007.
doi:10.1016/j.jastp.2007.03.009

27. Cooray, V., "Propagation effects due to finitely conducting ground on lightning generated magnetic fields evaluated using Sommer-feld's integrals," IX International Symposium on Lightning Protection, Foz do Iguaçu, Brazil, Nov. 2007.

28. Rachidi, F., C. A. Nucci, M. Ianoz, and C. Mazzetti, "Influence of lossy ground on lightning induced voltages on overhead lines," IEEE Trans. Electromag. Compat., Vol. 38, No. 3, 250-264, 1996.
doi:10.1109/15.536054

29. Rachidi, F., C. A. Nucci, and M. Ianoz, "Transient analysis of multiconductor lines above a lossy ground," IEEE Trans. Power Deliv., Vol. 14, No. 1, 294-302, 1999.
doi:10.1109/61.736741

30. Nucci, C. A., "Lightning induced voltages on distribution systems: Inflence of ground resistivity and system topology," Journal of Lightning Research, Vol. 1, 148-157, 2007.

31. IEC 60092-501 Edition 4.0 2007-08 "Electrical installations in ships: Special features --- electric propulsion plant,", 2007.

32. IEC 60092-351 Edition 3.0 2004-04 "Electrical installations in ships: Insulating materials for shipboard and offshore units, power, control, instrumentation, telecommunication and data cables,", 2004.

33. IEC 60092-504 Edition 3.0 2001-03 "Electrical installations in ships: Special features --- control and instrumentation,", 2001.

34. IEC 60945:2002 (revised in 2008) "Maritime navigation and radio-communication equipment and systems: General requirements --- methods of testing and required test results,", 2002.

35. IEC 60092-401 "Electrical installations in ships --- Part 401: Installation and test of completed installation 1980,", Amendment 2, 1997.

36. IEC 60092-202 "Electrical installations in ships --- Part 202: System design --- protection,", 1994.

37. IEC 60092-301 "Electrical installations in ships --- Part 301: Equipment --- generators and motors,", 1980.

38. IEC 60092-303 "Electrical installations in ships --- Part 303: Equipment --- transformers for power and lighting,", 1980.

39. IEC 60092-351 "Electrical installations in ships --- Part 351: Insulating materials for shipboard and offshore units, power, control, instrumentation, telecommunication and data cables,", 2004.

40. IEC 60092-352 "Electrical installations in ships --- Part 352: Choice and installation of electrical cables,", 2005.

41. IEC 60092-376 "Electrical installations in ships --- Part 376: Cables for control and instrumentation circuits 150/250V (300 V),", 2003.

42. IEC 60092-354 "Electrical installations in ships --- Part 354: Single- and three-core power cables with extruded solid insulation for rated voltages 6 kV (Um = 7,2 kV) up to 30 kV (Um = 36 kV),", 2003.

43. IEC 60092-503 "Electrical installations in ships --- Part 503: Special features --- AC supply systems with voltages in the range of above 1 kV up to and including 15 kV,", 2007.

44. IEC 62305 1-4, Ed-01 "Protection against lightning,", 2006.

45. MIL-STD-1310G "Department of defense: Standard practice for shipboard bonding, grounding, and other techniques for electromagnetic compatibility and safety,", 1996.

46. MIL-STD-464A "Department of defense: Interface standard, electromagnetic environmental effects requirements for systems,", 1997.

47. Military Handbook 419A, Department of Defense: Volumes I & II, Grounding, Bonding and Shielding, 1987.

48. IEEE C62.41-1991 "IEEE recommended practice for surge voltages in low-voltage AC power circuits,", 1999.

49. Meredith, S. L., S. K. Earles, I. Kostanic, N. Turner, and C. E. Otero, "How lightning tortuosity affects the electromagnetic fields by augmenting their effective distance," Progress In Electromagnetics Research B, Vol. 25, 155-169, 2010.
doi:10.2528/PIERB10072808

50. Izadi, M., M. Z. A. Ab Kadir, C. Gomes, and W. F. W. Ahmad, "An analytical second-FDTD method for evaluation of electric and magnetic fields at intermediate distances from lightning channel," Progress In Electromagnetics Research, Vol. 110, 329-352, 2010.
doi:10.2528/PIER10080801

51. Song, T.-X., Y.-H. Liu, and J.-M. Xiong, "Computations of electromagnetic fields radiated from complex lightning channels," Progress In Electromagnetics Research, Vol. 73, 93-105, 2007.
doi:10.2528/PIER07032501

52. Dumin, O. M., O. O. Dumina, and V. A. Katrich, "Evolution of transient electromagnetic fields in radially inhomogeneous nonstationary medium," Progress In Electromagnetics Research, Vol. 103, 403-418, 2010.
doi:10.2528/PIER10011909

53. Ergül, O. and L. Gürel, "Improving iterative solutions of the electric-field integral equation via transformations into normal equations," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 16, 2129-2138, 2010.
doi:10.1163/156939310793699082

54. Wang, J., W.-Y. Yin, J.-P. Fang, and Q.-F. Liu, "Transient responses of coaxial cables in an electrically large cabin with slots and windows illuminated by an electromagnetic pulse," Progress In Electromagnetics Research, Vol. 106, 1-16, 2010.
doi:10.2528/PIER10060708

55. Xie, H., J. Wang, R. Fan, and Y. Liu, "Study of loss effect of transmission lines and validity of a spice model in electromagnetic topology," Progress In Electromagnetics Research, Vol. 90, 89-103, 2009.
doi:10.2528/PIER08121605

56. Xie, H., J. Wang, R. Fan, and Y. Liu, "Spice models for radiated and conducted susceptibility analyses of multiconductor shielded cables," Progress In Electromagnetics Research, Vol. 103, 241-257, 2010.
doi:10.2528/PIER10020506

57. Bojovschi, A., W. S. T. Rowe, and K. L. Wong, "Electromagnetic field intensity generated by partial discharge in high voltage insulating materials," Progress In Electromagnetics Research, Vol. 104, 167-182, 2010.
doi:10.2528/PIER10010803