Vol. 109
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2010-10-25
A Novel Method for Magnetic Resonance Brain Image Classification Based on Adaptive Chaotic PSO
By
Progress In Electromagnetics Research, Vol. 109, 325-343, 2010
Abstract
Automated and accurate classification of magnetic resonance (MR) brain images is an integral component of the analysis and interpretation of neuroimaging. Many different and innovative methods have been proposed to improve upon this technology. In this study, we presented a forward neural network (FNN) based method to classify a given MR brain image as normal or abnormal. This method first employs a wavelet transform to extract features from images, and then applies the technique of principle component analysis (PCA) to reduce the dimensions of features. The reduced features are sent to an FNN, and these parameters are optimized via adaptive chaotic particle swarm optimization (ACPSO). K-fold stratified cross validation was used to enhance generalization. We applied the proposed method on 160 images (20 normal, 140 abnormal), and found that the classification accuracy is as high as 98.75% while the computation time per image is only 0.0452s.
Citation
Yudong Zhang, Shuihua Wang, and Lenan Wu, "A Novel Method for Magnetic Resonance Brain Image Classification Based on Adaptive Chaotic PSO," Progress In Electromagnetics Research, Vol. 109, 325-343, 2010.
doi:10.2528/PIER10090105
References

1. Mohsin, S. A., N. M. Sheikh, and W. Abbas, "MRI induced heating of artificial bone implants," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 5, 799-808, 2009.
doi:10.1163/156939309788019796

2. Cobos Sanchez, C., Cobos Sanchez, C., S. G. Garcia, L. D. Angulo, C. M. De JongS. G. Garcia, L. D. Angulo, C. M. De Jong Van Coevorden, and A. Rubio Bretones, "A divergence-free BEM method to model quasi-static currents: Application to MRI coil design," Progress In Electromagnetics Research B, Vol. 20, 187-203, 2010.
doi:10.2528/PIERB10011504

3. Mohsin, S. A., N. M. Sheikh, and U. Saeed, "MRI induced heating of deep brain stimulation leads: Effect of the air-tissue interface," Progress In Electromagnetics Research, Vol. 83, 81-91, 2008.
doi:10.2528/PIER08040504

4. Ravaud, R. and G. Lemarquand, "Magnetic field in MRI yokeless devices: Analytical approach," Progress In Electromagnetics Research, Vol. 94, 327-341, 2009.
doi:10.2528/PIER09061205

5. Mishra, M., N. Gupta, A. Dubey, and S. Shekhar, "Application of quasi monte carlo integration technique in efficient capacitance computation," Progress In Electromagnetics Research, Vol. 90, 309-322, 2009.
doi:10.2528/PIER09011310

6. Hynynen, K., "MRI-guided focused ultrasound treatments," Ultrasonics, Vol. 50, No. 2, 221-229, Ultrasonics, 2010.
doi:10.1016/j.ultras.2009.08.015

7. Danesfahani, R., et al., "Applying shannon wavelet basis functions to the method of moments for evaluating the radar cross section of the conducting and resistive surfaces," Progress In Electromagnetics Research B, Vol. 8, 257-292, 2008.
doi:10.2528/PIERB08062601

8. Valsan, S. P. and K. S. Swarup, "Wavelet transform based digital protection for transmission lines," International Journal of Electrical Power & Energy Systems, Vol. 31, No. 7-8, 379-388, 2009.
doi:10.1016/j.ijepes.2009.03.024

9. Camacho, J., J. Picó, and A. Ferrer, "Corrigendum to `The best approaches in the on-line monitoring of batch processes based on PCA: Does the modelling structure matter?' [Analytica Chimica Acta Vol. 642, 59-68, 2009.]," Analytica Chimica Acta, Vol. 658, No. 1, 106, 2010.
doi:10.1016/j.aca.2009.10.054

10. Bigler, D. C., et al., "STAMPS: Software tool for automated MRI post-processing on a supercomputer," Computer Methods and Programs in Biomedicine, Vol. 658, No. 1, 146-157, 2009.
doi:10.1016/j.cmpb.2009.02.006

11. Cocosco, C. A., A. P. Zijdenbos, and A. C. Evans, "A fully automatic and robust brain MRI tissue classification method," Medical Image Analysis, Vol. 7, No. 4, 513-527, 2003.
doi:10.1016/S1361-8415(03)00037-9

12. Yeh, J.-Y. and J. C. Fu, "A hierarchical genetic algorithm for segmentation of multi-spectral human-brain MRI," Expert Systems with Applications, Vol. 34, No. 2, 1285-1295, 2008.
doi:10.1016/j.eswa.2006.12.012

13. Phaiboon, S. and P. Phokharatkul, "Path loss prediction for low-rise buildings with image classification on 2-D aerial photographs," Progress In Electromagnetics Research, Vol. 95, 135-152, 2009.
doi:10.2528/PIER09061101

14. Coulibaly, P. and N. D. Evora, "Comparison of neural network methods for infilling missing daily weather records," Journal of Hydrology, Vol. 341, No. 1-2, 27-41, 2007.
doi:10.1016/j.jhydrol.2007.04.020

15. Parappagoudar, M. B., D. K. Pratihar, and G. L. Datta, "Forward and reverse mappings in green sand mould system using neural networks," Applied Soft Computing, Vol. 1, No. 1, 239-260, 2008.
doi:10.1016/j.asoc.2007.01.005

16. Robotham, H., et al., "Acoustic identification of small pelagic fish species in Chile using support vector machines and neural networks," Fisheries Research, Vol. 102, No. 1-2, 115-122, 2010.
doi:10.1016/j.fishres.2009.10.015

17. Llobet, E., et al., "Efficient feature selection for mass spectrometry based electronic nose applications," Chemometrics and Intelligent Laboratory Systems, Vol. 85, No. 2, 253-261, 2007.
doi:10.1016/j.chemolab.2006.07.002

18. Kiranyaz, S., et al., "Evolutionary artificial neural networks by multi-dimensional particle swarm optimization," Neural Networks, Vol. 22, No. 10, 1448-1462, 2009.
doi:10.1016/j.neunet.2009.05.013

19. Lan, J., et al., "An investigation of neural network classifiers with unequal misclassification costs and group sizes," Decision Support Systems, Vol. 48, No. 4, 582-591, 2010.
doi:10.1016/j.dss.2009.11.008

20. Chaplot, S., L. M. Patnaik, and N. R. Jagannathan, "Classification of magnetic resonance brain images using wavelets as input to support vector machine and neural network," Biomedical Signal Processing and Control, Vol. 1, No. 1, 86-92, 2006.
doi:10.1016/j.bspc.2006.05.002

21. El-Dahshan, E.-S. A., T. Hosny, and A.-B. M. Salem, "Hybrid intelligent techniques for MRI brain images classification," Digital Signal Processing, Vol. 20, No. 2, 433-441, 2010.
doi:10.1016/j.dsp.2009.07.002

22. Heric, D. and D. Zazula, "Combined edge detection using wavelet transform and signal registration," Image and Vision Computing, Vol. 25, No. 5, 652-662, 2007.
doi:10.1016/j.imavis.2006.05.008

23. Zhou, R., et al., "Mechanical equipment fault diagnosis based on redundant second generation wavelet packet transform," Digital Signal Processing, Vol. 20, No. 1, 276-288, 2010.
doi:10.1016/j.dsp.2009.04.005

24. Friedrichs, D. A., et al., "Methodologically induced differences in oak site classifications in a homogeneous tree-ring network," Dendrochronologia, Vol. 27, No. 1, 21-30, 2009.
doi:10.1016/j.dendro.2008.02.001

25. Pathak, N., G. K. Mahanti, S. K. Singh, J. K. Mishra, and A. Chakraborty, "Synthesis of thinned planar circular array antennas using modified particle swarm optimization," Progress In Electromagnetics Research Letters, Vol. 12, 87-97, 2009.
doi:10.2528/PIERL09090606

26. Zhang, Y. and L.Wu, "Weights optimization of neural network via improved BCO approach," Progress in Electromagnetics Research, Vol. 83, 185-198, 2008.
doi:10.2528/PIER08051403

27. Zhang, Y., L. Wu, and G. Wei, "A new classifier for polarimetric SAR images," Progress in Electromagnetics Research, Vol. 94, 83-104, 2009.
doi:10.2528/PIER09041905

28. May, R. J., H. R. Maier, and G. C. Dandy, "Data splitting for artificial neural networks using SOM-based stratified sampling," Neural Networks, Vol. 23, No. 2, 283-294, 2010.
doi:10.1016/j.neunet.2009.11.009

29. Armand, S., et al., "Linking clinical measurements and kinematic gait patterns of toe-walking using fuzzy decision trees," Gait & Posture, Vol. 25, No. 3, 475-484, 2007.
doi:10.1016/j.gaitpost.2006.05.014

30. Gdeisat, M. A., et al., "Spatial and temporal carrier fringe pattern demodulation using the one-dimensional continuous wavelet transform: Recent progress, challenges, and suggested developments," Optics and Lasers in Engineering, Vol. 47, No. 12, 1348-1361, 2009.
doi:10.1016/j.optlaseng.2009.07.009

31. Ludwig, Jr, O., et al., "Applications of information theory, genetic algorithms, and neural models to predict oil flow," Communications in Nonlinear Science and Numerical Simulation, Vol. 14, No. 7, 2870-2885, 2009.
doi:10.1016/j.cnsns.2008.12.011

32. Kellegöz, T., B. Toklu, and J. Wilson, "Elite guided steady-state genetic algorithm for minimizing total tardiness in flowshops," Computers & Industrial Engineering, Vol. 58, No. 2, 300-306, 2010.
doi:10.1016/j.cie.2009.11.001

33. Acharjee, P. and S. K. Goswami, "Expert algorithm based on adaptive particle swarm optimization for power flow analysis," Expert Systems with Applications, Vol. 36, No. 3, Part 1, 5151-5156, 2009.