1. Mohsin, S. A., N. M. Sheikh, and W. Abbas, "MRI induced heating of artificial bone implants," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 5, 799-808, 2009.
doi:10.1163/156939309788019796
2. Cobos Sanchez, C., Cobos Sanchez, C., S. G. Garcia, L. D. Angulo, C. M. De JongS. G. Garcia, L. D. Angulo, C. M. De Jong Van Coevorden, and A. Rubio Bretones, "A divergence-free BEM method to model quasi-static currents: Application to MRI coil design," Progress In Electromagnetics Research B, Vol. 20, 187-203, 2010.
doi:10.2528/PIERB10011504
3. Mohsin, S. A., N. M. Sheikh, and U. Saeed, "MRI induced heating of deep brain stimulation leads: Effect of the air-tissue interface," Progress In Electromagnetics Research, Vol. 83, 81-91, 2008.
doi:10.2528/PIER08040504
4. Ravaud, R. and G. Lemarquand, "Magnetic field in MRI yokeless devices: Analytical approach," Progress In Electromagnetics Research, Vol. 94, 327-341, 2009.
doi:10.2528/PIER09061205
5. Mishra, M., N. Gupta, A. Dubey, and S. Shekhar, "Application of quasi monte carlo integration technique in efficient capacitance computation," Progress In Electromagnetics Research, Vol. 90, 309-322, 2009.
doi:10.2528/PIER09011310
6. Hynynen, K., "MRI-guided focused ultrasound treatments," Ultrasonics, Vol. 50, No. 2, 221-229, Ultrasonics, 2010.
doi:10.1016/j.ultras.2009.08.015
7. Danesfahani, R., et al., "Applying shannon wavelet basis functions to the method of moments for evaluating the radar cross section of the conducting and resistive surfaces," Progress In Electromagnetics Research B, Vol. 8, 257-292, 2008.
doi:10.2528/PIERB08062601
8. Valsan, S. P. and K. S. Swarup, "Wavelet transform based digital protection for transmission lines," International Journal of Electrical Power & Energy Systems, Vol. 31, No. 7-8, 379-388, 2009.
doi:10.1016/j.ijepes.2009.03.024
9. Camacho, J., J. Picó, and A. Ferrer, "Corrigendum to `The best approaches in the on-line monitoring of batch processes based on PCA: Does the modelling structure matter?' [Analytica Chimica Acta Vol. 642, 59-68, 2009.]," Analytica Chimica Acta, Vol. 658, No. 1, 106, 2010.
doi:10.1016/j.aca.2009.10.054
10. Bigler, D. C., et al., "STAMPS: Software tool for automated MRI post-processing on a supercomputer," Computer Methods and Programs in Biomedicine, Vol. 658, No. 1, 146-157, 2009.
doi:10.1016/j.cmpb.2009.02.006
11. Cocosco, C. A., A. P. Zijdenbos, and A. C. Evans, "A fully automatic and robust brain MRI tissue classification method," Medical Image Analysis, Vol. 7, No. 4, 513-527, 2003.
doi:10.1016/S1361-8415(03)00037-9
12. Yeh, J.-Y. and J. C. Fu, "A hierarchical genetic algorithm for segmentation of multi-spectral human-brain MRI," Expert Systems with Applications, Vol. 34, No. 2, 1285-1295, 2008.
doi:10.1016/j.eswa.2006.12.012
13. Phaiboon, S. and P. Phokharatkul, "Path loss prediction for low-rise buildings with image classification on 2-D aerial photographs," Progress In Electromagnetics Research, Vol. 95, 135-152, 2009.
doi:10.2528/PIER09061101
14. Coulibaly, P. and N. D. Evora, "Comparison of neural network methods for infilling missing daily weather records," Journal of Hydrology, Vol. 341, No. 1-2, 27-41, 2007.
doi:10.1016/j.jhydrol.2007.04.020
15. Parappagoudar, M. B., D. K. Pratihar, and G. L. Datta, "Forward and reverse mappings in green sand mould system using neural networks," Applied Soft Computing, Vol. 1, No. 1, 239-260, 2008.
doi:10.1016/j.asoc.2007.01.005
16. Robotham, H., et al., "Acoustic identification of small pelagic fish species in Chile using support vector machines and neural networks," Fisheries Research, Vol. 102, No. 1-2, 115-122, 2010.
doi:10.1016/j.fishres.2009.10.015
17. Llobet, E., et al., "Efficient feature selection for mass spectrometry based electronic nose applications," Chemometrics and Intelligent Laboratory Systems, Vol. 85, No. 2, 253-261, 2007.
doi:10.1016/j.chemolab.2006.07.002
18. Kiranyaz, S., et al., "Evolutionary artificial neural networks by multi-dimensional particle swarm optimization," Neural Networks, Vol. 22, No. 10, 1448-1462, 2009.
doi:10.1016/j.neunet.2009.05.013
19. Lan, J., et al., "An investigation of neural network classifiers with unequal misclassification costs and group sizes," Decision Support Systems, Vol. 48, No. 4, 582-591, 2010.
doi:10.1016/j.dss.2009.11.008
20. Chaplot, S., L. M. Patnaik, and N. R. Jagannathan, "Classification of magnetic resonance brain images using wavelets as input to support vector machine and neural network," Biomedical Signal Processing and Control, Vol. 1, No. 1, 86-92, 2006.
doi:10.1016/j.bspc.2006.05.002
21. El-Dahshan, E.-S. A., T. Hosny, and A.-B. M. Salem, "Hybrid intelligent techniques for MRI brain images classification," Digital Signal Processing, Vol. 20, No. 2, 433-441, 2010.
doi:10.1016/j.dsp.2009.07.002
22. Heric, D. and D. Zazula, "Combined edge detection using wavelet transform and signal registration," Image and Vision Computing, Vol. 25, No. 5, 652-662, 2007.
doi:10.1016/j.imavis.2006.05.008
23. Zhou, R., et al., "Mechanical equipment fault diagnosis based on redundant second generation wavelet packet transform," Digital Signal Processing, Vol. 20, No. 1, 276-288, 2010.
doi:10.1016/j.dsp.2009.04.005
24. Friedrichs, D. A., et al., "Methodologically induced differences in oak site classifications in a homogeneous tree-ring network," Dendrochronologia, Vol. 27, No. 1, 21-30, 2009.
doi:10.1016/j.dendro.2008.02.001
25. Pathak, N., G. K. Mahanti, S. K. Singh, J. K. Mishra, and A. Chakraborty, "Synthesis of thinned planar circular array antennas using modified particle swarm optimization," Progress In Electromagnetics Research Letters, Vol. 12, 87-97, 2009.
doi:10.2528/PIERL09090606
26. Zhang, Y. and L.Wu, "Weights optimization of neural network via improved BCO approach," Progress in Electromagnetics Research, Vol. 83, 185-198, 2008.
doi:10.2528/PIER08051403
27. Zhang, Y., L. Wu, and G. Wei, "A new classifier for polarimetric SAR images," Progress in Electromagnetics Research, Vol. 94, 83-104, 2009.
doi:10.2528/PIER09041905
28. May, R. J., H. R. Maier, and G. C. Dandy, "Data splitting for artificial neural networks using SOM-based stratified sampling," Neural Networks, Vol. 23, No. 2, 283-294, 2010.
doi:10.1016/j.neunet.2009.11.009
29. Armand, S., et al., "Linking clinical measurements and kinematic gait patterns of toe-walking using fuzzy decision trees," Gait & Posture, Vol. 25, No. 3, 475-484, 2007.
doi:10.1016/j.gaitpost.2006.05.014
30. Gdeisat, M. A., et al., "Spatial and temporal carrier fringe pattern demodulation using the one-dimensional continuous wavelet transform: Recent progress, challenges, and suggested developments," Optics and Lasers in Engineering, Vol. 47, No. 12, 1348-1361, 2009.
doi:10.1016/j.optlaseng.2009.07.009
31. Ludwig, Jr, O., et al., "Applications of information theory, genetic algorithms, and neural models to predict oil flow," Communications in Nonlinear Science and Numerical Simulation, Vol. 14, No. 7, 2870-2885, 2009.
doi:10.1016/j.cnsns.2008.12.011
32. Kellegöz, T., B. Toklu, and J. Wilson, "Elite guided steady-state genetic algorithm for minimizing total tardiness in flowshops," Computers & Industrial Engineering, Vol. 58, No. 2, 300-306, 2010.
doi:10.1016/j.cie.2009.11.001
33. Acharjee, P. and S. K. Goswami, "Expert algorithm based on adaptive particle swarm optimization for power flow analysis," Expert Systems with Applications, Vol. 36, No. 3, Part 1, 5151-5156, 2009.