Vol. 107
Latest Volume
All Volumes
PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2010-08-05
Fast RCS Prediction Using Multiresolution Shooting and Bouncing Ray Method on the GPU
By
Progress In Electromagnetics Research, Vol. 107, 187-202, 2010
Abstract
This paper presents a GPU-based multiresolution shooting and bouncing ray (MSBR) method with the kd-tree acceleration structure for the fast radar cross section (RCS) prediction of electrically large and complex targets. The multiresolution grid algorithm can greatly reduce the total number of ray tubes, as it adaptively adjusts the density of ray tubes for regions with different complexities of their structures, while the kd-tree acceleration structure can highly decrease the number of ray-patch intersection tests. The multiresolution grid technique and kd-tree traversal algorithm are fully implemented on the GPU to further accelerate the SBR by exploiting the massively parallel computing ability. Numerical experiments demonstrate that the proposed GPU-based MSBR can significantly improve the computational efficiency. It is about 40 times faster than the CPU MSBR, and at least 4.8 times faster than the GPU-based SBR without the multiresolution grid algorithm.
Citation
Peng Cheng Gao, Yu Bo Tao, and Hai Lin, "Fast RCS Prediction Using Multiresolution Shooting and Bouncing Ray Method on the GPU," Progress In Electromagnetics Research, Vol. 107, 187-202, 2010.
doi:10.2528/PIER10061807
References

1. Li, X.-F., Y.-J. Xie, and R. Yang, "High-frequency method analysis on scattering from homogenous dielectric objects with ," Progress In Electromagnetics Research B, Vol. 1, 177-188, 2008.

2. Park, S. H., K. K. Park, J. H. Jung, H. T. Kim, and K. T. Kim, "Construction of training database based on high frequency RCS prediction methods for ATR," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 5-6, 693-703, 2008.

3. Ling, H., R. C. Chou, and S. W. Lee, "Shooting and bouncing rays: Calculating the RCS of an arbitrarily shaped cavity," IEEE Trans. Antennas Propag., Vol. 37, No. 2, 194-205, 1989.

4. Jin, K. S., T. I. Suh, S. H. Suk, B. C. Kim, and H. T. Kim, "Fast ray tracing using a space-division algorithm for RCS prediction," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 1, 119-126, 2006.

5. Tao, Y.-B., H. Lin, and H. J. Bao, "Kd-tree based fast ray tracing for RCS prediction," Progress In Electromagnetics Research, Vol. 81, 329-341, 2008.

6. Havran, V., "Heuristic ray shooting algorithms,", Ph.D. dissertation, Univ. Czech Technical, Prague, 2000.

7. Suk, S. H., T. I. Seo, H. S. Park, and H. T. Kim, "Multiresolution grid algorithm in the SBR and its application to the RCS calculation," Microw. Opt. Technol. Lett., Vol. 29, No. 6, 394-397, 2001.

8. Bang, J. K., B. C. Kim, S. H. Suk, K. S. Jin, and H. T. Kim, "Time consumption reduction of ray tracing for RCS prediction using e±cient grid division and space division algorithms," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 6, 829-840, 2007.

9. Kim, B.-C., K. K. Park, and H.-T. Kim, "Efficient RCS prediction method using angular division algorithm," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 1, 65-74, 2009.

10. Park, K.-K. and H.-T. Kim, "RCS prediction acceleration and reduction of table size for the angular division algorithm," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 11-12, 1657-1664, 2009.

11. Owens, J. D., D. Luebke, N. Govindaraju, M. Harris, J. Kruger, A. E. Lefohn, and T. J. Purcell, "A survey of general-purpose computation on graphics hardware," Comput. Graphics Forum, Vol. 26, No. 1, 80-113, 2007.

12. NVIDIA Corporation NVIDIA CUDA Programming Guide 2.2.1 , http://developer.download.nvidia.com/compute/ cuda/2 21/too-lkit/docs/NVIDIA CUDA Programming Guide 2.2.1.pdf.

13. Rius, J. M., M. Ferrando, and L. Jofre, "High frequency RCS of complex radar targets in real time," IEEE Trans. Antennas Propag., Vol. 41, No. 9, 1308-1318, 1993.

14. Zha, F.-T., S.-X. Gong, Y.-X. Xu, Y. Guan, and W. Jiang, "Fast shadowing technique for electrically large targets using Z-buffer," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 2-3, 341-349, 2009.

15. Tao, Y. B., H. Lin, and H. J. Bao, "From CPU to GPU: GPU-based electromagnetic computing (GPUECO)," Progress In Electromagnetics Research, Vol. 81, 1-19, 2008.

16. Peng, S. X. and Z. P. Nie, "Acceleration of the method of moments calculations by using graphics processing units," IEEE Trans. Antennas Propag., Vol. 56, No. 7, 2130-2133, 2008.

17. Zainud-Deen, S. H., E. El-Deen, M. S. Ibrahim, K. H. Awadalla, and A. Z. Botros, "Electromagnetic scattering using GPU-based finite difference frequency domain method," Progress In Electromagnetics Research B, Vol. 16, 351-369, 2009.

18. Xu, K., Z. H. Fan, D. Z. Ding, and R. S. Chen, "GPU accelerated unconditionally stable Crank-Nicolson FDTD method for the analysis of three-dimensional microwave circuits," Progress In Electromagnetics Research, Vol. 102, 381-395, 2010.

19. Tao, Y. B., H. Lin, and H. J. Bao, "GPU-based shooting and bouncing ray method for fast RCS prediction," IEEE Trans. Antennas Propag., Vol. 58, No. 2, 494-502, 2010.

20. Balanis, C. A., Advanced Engineering Electromagnetics, Wiley, 1989.

21. Baldauf, J., S. W. Lee, L. Lin, S. K. Jeng, S. M. Scarborough, and C. L. Yu, "High frequency scattering from trihedral corner reflectors and other benchmark targets: SBR vs. experiments," IEEE Trans. Antennas Propag., Vol. 39, No. 9, 1345-1351, 1991.

22. Goldsmith, J. and J. Salmon, "Automatic creation of object hierarchies for ray tracing," IEEE Computer Graphics and Applications, Vol. 7, No. 5, 14-20, 1989.

23. Popov, S., J. Gunther, H. P. Seidel, and P. Slusallek, "Stackless kd-tree traversal for high performance GPU ray tracing," Comput. Graphics Forum, Vol. 26, No. 3, 415-424, 2007.

24. Jin, B., I. Ihm, B. Chang, C. Park, W. Lee, and S. Jung, "Selective and adaptive supersampling for real-time ray tracing," Proceedings of the Conference on High Performance Graphics 2009, Vol. 34, No. 10, 1064-1076, 2009.

25. Song, J. M. and W. C. Chew, "Multilevel fast multipole algorithm for solving combined field integral equations of electromagnetic ," Microw. Opt. Tech. Lett., Vol. 10, 14-19, 1995.

26. Yang, M.-L. and X.-Q. Sheng, "Parallel high-order FE-BI-MLFMA for scattering by large and deep coated cavities loaded with obstacles," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 13, 1813-1823, 2009.

27. Koujoumijan, R. G. and P. H. Pathak, "A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface," Proc. IEEE, Vol. 62, 1448-1461, 1974.

28. Johansen, P. M., "Uniform physical theory of diffraction equivalent edge currents for truncated wedge strips," IEEE Trans. Antennas Propag., Vol. 44, No. 7, 989-995, 1996.