Vol. 102
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2010-02-24
Optimal Constrained Field Focusing for Hyperthermia Cancer Therapy: a Feasibility Assessment on Realistic Phantoms
By
Progress In Electromagnetics Research, Vol. 102, 125-141, 2010
Abstract
Microwave hyperthermia is a non-invasive treatment for cancer which exploits a selective heating of tissues induced through focused electromagnetic fields. In order to improve the treatment's efficiency, while minimizing side effects, it is necessary to achieve a constrained focusing of the field radiated by the sources. To address this issue, in this paper we present an innovative and computationally effective approach to the field focusing for hyperthermia. The proposed method, after establishing the number of sources to be used, determines the excitations of the given set of sources such to produce a maximum field in a given region of space subject to a completely arbitrary mask for the field amplitude in all other regions. As the approach relies on a formulation of the problem in terms of convex programming, it is able to achieve the globally optimal solution without the adoption of computationally intensive global optimization procedures. A preliminary assessment of the feasibility is given on hyperthermia therapy of breast cancer by means of numerical examples run on realistic 2D phantoms of female breast.
Citation
Domenica A. M. Iero, Tommaso Isernia, Andrea Francesco Morabito, Ilaria Catapano, and Lorenzo Crocco, "Optimal Constrained Field Focusing for Hyperthermia Cancer Therapy: a Feasibility Assessment on Realistic Phantoms," Progress In Electromagnetics Research, Vol. 102, 125-141, 2010.
doi:10.2528/PIER10011207
References

1. Gerweck, L. L., "Hyperthermia in cancer therapy: The biological basis and unresolved questions ," Cancer Research, Vol. 45, 3408-3414, 1985.

2. Falk, M. H. and R. D. Issels, "Hyperthermia in oncology," International Journal of Hyperthermia, Vol. 17, 1-18, 2001.
doi:10.1080/02656730150201552

3. Van Der Zee, J., B. van der Holt, P. J. M. Rietveld, P. A. Helle, A. J. Wijnmaalen, W. L. J. van Putten, and G. C. van Rhoon, "Reirradiation combined with hyperthermia in recurrent breast cancer results in a worthwhile local palliation," Br. Jour. Cancer, Vol. 79, 483-490, 1999.
doi:10.1038/sj.bjc.6690075

4. Kronberger, L., P. Wagner, M. Puchinger, H. Stranzl, and P. Kohek, "Radiofrequency-hyperthermia in combination with chemo and radiotherapy in palliative treatment of breast cancer: A case report ," The Internet Journal of Surgery, Vol. 5, 2004.

5. Fenn, A. J., Adaptive Phased Array Thermotherapy for Cancer, Artech House, London, 2008.

6. Gee, W., S.-W. Lee, N. K. Bong, C. A. Cain, R. Mittra, and R. L. Magin, "Focused array hyperthermia applicator: Theory and experiment ," IEEE Trans. Biomed. Eng., Vol. 31, 38-46, 1984.
doi:10.1109/TBME.1984.325368

7. Castrillo, V. U., F. Chiadini, G. d'Ambrosio, V. Fiumara, R. Massa, G. Panariello, I. M. Pinto, and A. Scaglione, "Waveguide slot applicators for microwave heating," ICECom2003, 17th Int. Conf. on Appl. EM and Comm., 49-51, Dubrovnik, Croatia, 2003.

8. Hand, J. W., J. L. Cheetham, and A. J. Hand, "Absorbed power distributions from coherent microwave arrays for localized hyperthermia," IEEE Trans. Microwave Theory Tech., Vol. 34, 484-489, 1986.
doi:10.1109/TMTT.1986.1133380

9. Loane, J., H. Ling, B. F. Wang, and S. W. Lee, "Experimental investigation of a retro-focused microwave hyperthermia applicator: Conjugate-field matching scheme," IEEE Trans. Microwave Theory Tech., Vol. 34, 490-494, 1986.
doi:10.1109/TMTT.1986.1133381

10. Jouvie, F., J.-C. Bolomey, and G. Gaboriaaud, "Discussion of capabilities of microwave phased arrays for hyperthermia treatment of neck tumors ," IEEE Trans. Microwave Theory Tech., Vol. 34, 495-501, 1986.
doi:10.1109/TMTT.1986.1133382

11. Paulides, M. M., S. H. J. A. Vossen, A. P. M. Zwamborn, and G. C. van Roon, "Theoretical investigation into the feasibility to deposit RF energy centrally in the head-and-neck region," Int. J. Radiation Oncology Biol. Phys., Vol. 63, 634-642, 2005.

12. Wlodarczyk, W., J. Nadobny, P. Wust, G. Monich, P. Deuhard, and R. Felix, "Systematic design of antennas for cylindrical 3D phased array hyperthermia applicator," Proc. IEEE International Symposium Antennas and Propagation Society, Vol. 2, 1004-1007, 1999.

13. Krairiksh, M., T. Wakabayashi, and W. Kiranon, "A spherical slot array applicator for medical applications," IEEE Trans. Microwave Theory Tech., Vol. 43, 78-86, 1995.
doi:10.1109/22.363004

14. Gupta, R. C. C. and S. P. Singh, "Elliptically bent slotted waveguide conformal focused array for hyperthermia treatment of tumors in curved region of human body ," Progress In Electromagnetics Research, Vol. 62, 107-125, 2006.
doi:10.2528/PIER06012801

15. Deng, T., "Optimization of SAR distributions in liver and lung regions irradiated by the H-horn annular phased array hyperthermia system ," IEEE Trans. Microwave Theory Tech., Vol. 39, 852-856, 1991.
doi:10.1109/22.79113

16. Gong, Y. and G. Wang, "Superficial tumor hyperthermia with flat left-handed metamaterial lens," Progress In Electromagnetics Research, Vol. 98, 389-405, 2009.
doi:10.2528/PIER09091401

17. Arunachalam, K., S. S. Udpa, and L. Udpa, "Microwave breast cancer hyperthermia using deformable mirror," IEEE Antennas and Propagation Society International Symposiumm, APS2006, 2191-2194, 2006.

18. Fletcher, R., Practical Methods of Optimization, Wiley, New York, 1990.

19. Converse, M., E. J. Bond, S. C. Hagness, and B. D. van Veen, "Ultrawide-band microwave space-time beamforming for hyper-thermia treatment of breast cancer: A computational feasibilty study ," IEEE Trans. Microwave Theory Tech., Vol. 52, 1876-1889, 2004.
doi:10.1109/TMTT.2004.832012

20. Converse, M., E. J. Bond, S. C. Hagness, and B. D. van Veen, "A computational study of ultra-wideband versus narrowband microwave hypertermia for breast cancer treatment," IEEE Trans. Microwave Theory Tech., Vol. 54, 2169-2180, 2006.
doi:10.1109/TMTT.2006.872790

21. Isernia, T. and G. Panariello, "Optimal focusing of scalar fields subject to arbitrary upper bounds," Electronics Letters, Vol. 34, 162-164, 1998.
doi:10.1049/el:19980212

22. Isernia, T., P. Di Iorio, and F. Soldovieri, "A simple and effective approach for the optimal focusing of scalar fields subject to arbitrary upper bounds," IEEE Transactions on Antennas and Propagation, Vol. 48, 1837-1847, 2000.
doi:10.1109/8.901272

23. Armitage, D. W., H. H. Le Veen, and R. Pethig, "Radiofrequency-induced hyperthermia: Computer simulation of specific absorption rate distributions using realistic anatomical models," Physics in Medicine and Biology, Vol. 28, 31-42, 1983.
doi:10.1088/0031-9155/28/1/003

24. Lazebnik, M., L. McCartney, D. Popovic, C. B. Watkins, M. J. Lindstrom, J. Harter, S. Sewall, A. Magliocco, J. H. Booske, M. Okoniewski, and S. C. Hagness, "A large-scale study of the ultrawideband microwave dielectric properties of normal breast tissue obtained from reduction surgeries," Phisycs in Medicine and Biology, Vol. 52, 2637-2656, 2007.
doi:10.1088/0031-9155/52/10/001

25. Lazebnik, M., D. Popovic, L. McCartney, C. B. Watkins, M. J. Lindstrom, J. Harter, S. Sewall, T. Ogilvie, A. Magliocco, T. M. Breslin, W. Temple, D. Mew, J. H. Booske, M. Okoniewski, and S. C. Hagness, "A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissue obtained from cancer surgeries ," Phisycs in Medicine and Biology, Vol. 52, 6093-6115, 2007.
doi:10.1088/0031-9155/52/20/002

26. Zastrow, E., S. K. Davis, M. Lazebnik, F. Kelcz, B. D. van Veem, and S. C. Hagness, "Database of 3D grid-based numerical breast phantom for use in computational electromagnetics simulations,", http://uwcem.ece.wisc.edu/home.htm.

27. Bucci, O. M. and T. Isernia, "Electromagnetic inverse scattering: retrievable information and measurement strategies," Radio Sci., Vol. 32, 2123-2137, 1997.
doi:10.1029/97RS01826

28. Bucci, O. M., C. Gennarelli, and C. Savarese, "Representation of electromagnetic fields over arbitrary surfaces by a finite and non redundant number of samples," IEEE Transactions on Antennas and Propagation, Vol. 46, 351-359, 1998.
doi:10.1109/8.662654

29. Catapano, I., L. Di Donato, L. Crocco, O. M. Bucci, A. F. Morabito, T. Isernia, and R. Massa, "On quantitative microwave tomography of female breast," Progress In Electromagnetics Research, Vol. 97, 75-93, 2009.
doi:10.2528/PIER09080604

30. Collin, R., Antennas and Radiowave Propagation, Mcgraw Hill, New York, 1985.

31. Romeo, S., L. Di Donato, O. M. Bucci, I. Catapano, L. Crocco, M. R. Scarfi, and R. Massa, "Microwave breast imaging: Dielectric characterization of TX-100 based mixtures for experimental phantoms,", submitted, 2010.

32. Richmond, J., "Scattering by a dielectric cylinder of arbitrary cross section shape," IEEE Transactions on Antennas and Propagation, Vol. 13, 334-341, 1965.
doi:10.1109/TAP.1965.1138427

33. Neufeld, E., M. Paulides, M. Capstick, G. C. van Rhoon, and N. Kuster, "Latest advances in EM hyperthermia cancer treat ments," International Conference on Electromagnetics in Advanced Applications, ICEAA2009 , Torino, Italy, Sept. 2009.

34. Bolomey, J. C., L. Jofre, and G. Peronnet, "On the possible use of microwave-active imaging for remote thermal sensing," IEEE Transactions on Microwave Theory and Techniques, Vol. 31, 777-781, 1983.
doi:10.1109/TMTT.1983.1131592

35. Rius, J. M., C. Pichot, L. Jofre, J. C. Bolomey, N. Joachimowicz, A. Broquetas, and M. Ferrando, "Planar and cylindrical active microwave temperature imaging: Numerical simulations," IEEE Transactions on Medical Imaging, Vol. 11, 457-469, 1992.
doi:10.1109/42.192681

36. Sawaragi, Y., H. Nakayama, and T. Tanino, "Theory of Multiobjective Optimization,", Academic Press Inc., Orlando, 1985.

37. Voyer, D., L. Nicolas, R. Perrussel, and F. Musy, "Comparison problem," Progress In Electromagnetics Research B, Vol. 11, 189-204, 2009.
doi:10.2528/PIERB08112104