Vol. 99
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2009-11-23
Specialty Fibers Designed by Photonic Crystals
By
Progress In Electromagnetics Research, Vol. 99, 225-244, 2009
Abstract
In this paper, several kinds of photonic crystal fibers (PCFs) have been proposed and characterized. Two types of PCF structures have been proposed, air holes in silica or silica rods in air in a triangular lattice around the core. It has been shown that by reshaping the cladding holes, varying the diameters of the holes in one or two rows around the core or changing the refractive index of the holes, different types of specialty fibers, such as dispersion shifted fibers (DSFs), non-zero dispersion shifted fibers (NZ-DSFs), dispersion flattened fibers (DFFs), dispersion compensating fibers (DCFs), and polarization maintaining fibers (PMFs), can be designed. The PCF core is silica to support the propagation of lightwave by total internal reflection (TIR) in the third telecommunication window. The chromatic dispersion, confinement loss and modal birefringence of the proposed specialty fibers have been numerically derived.
Citation
Najmeh Nozhat, and Nosrat Granpayeh, "Specialty Fibers Designed by Photonic Crystals," Progress In Electromagnetics Research, Vol. 99, 225-244, 2009.
doi:10.2528/PIER09092309
References

1. Saitoh, K., M. Koshiba, T. Hasegawa, and E. Sasaoka, "Chromatic dispersion control in photonic crystal fibers: Application to ultra-flattened dispersion," Opt. Express, Vol. 11, 843-852, 2003.

2. Saitoh, K. and M. Koshiba, "Numerical modeling of photonic crystal fibers," IEEE J. Lightwave Technol., Vol. 23, 3580-3590, 2005.
doi:10.2528/PIERM08021805

3. Pourkazemi, A. and M. Mansourabadi, "Comparison of fundamental space-filling mode index, effective index and the second and third order dispersion of photonic crystal fibers calculated by scalar effective index method and empirical relations methods," Progress In Electromagnetics Research M, Vol. 1, 197-206, 2008.
doi:10.1364/JOSAB.20.000443

4. Lægsgaard, J., A. Bjarklev, and S. E. B. Libori, "Chromatic dispersion in photonic crystal fibers fast and accurate scheme for calculation," J. Opt. Soc. Am. B, Vol. 20, 443-448, 2003.
doi:10.1364/OPEX.13.000267

5. Saitoh, K. and M. Koshiba, "Empirical relations for simple design of photonic crystal fibers," Opt. Express, Vol. 13, 267-274, 2004.

6. Uranus, H. P., H. J. W. M. Hoekstra, and E. Van Groesen, "Modes of an endlessly single-mode photonic crystal fiber: A finite element investigation," Proc. 11th IEEE Symp. Commun. and Vehicular Technol. (SCVT), Ghent University, Gent, Belgium, 2004.
doi:10.1364/JOSAA.22.001655

7. Poli, F., M. Foroni, M. Bottacini, M. Fuochi, N. Burani, L. Rosa, A. Cucinotta, and S. Selleri, "Single-mode regime of square-lattice photonic crystal fibers," J. Opt. Soc. Am. B, Vol. 22, 1655-1661, 2005.
doi:10.1088/1464-4258/7/12/009

8. Antkowiak, M., R. Kotynski, T. Nasilowski, P. Lesiak, J. Wojcik, W. Urbanczyk, F. Berghmans, and H. Thienpont, "Phase and group modal birefringence of triple-defect photonic crystal fibers," J. Opt. A: Pure Appl. Opt., Vol. 7, 763-766, 2005.
doi:10.1016/j.optlastec.2005.07.008

9. Wang, J., C. Jiang, W. Hu, and M. Gao, "Properties of index-guided PCF with air-core," Optics and Laser Technol., Vol. 39, 317-321, 2007.
doi:10.1109/LPT.2006.890040

10. Chen, D. and L. Shen, "Ultrahigh birefringent photonic crystal fiber with ultralow confinement loss," IEEE J. Photon. Technol. Lett., Vol. 19, 185-187, 2007.
doi:10.1016/j.optcom.2008.05.008

11. Yang, T. J., L. F. Shen, Y. F. Chau, M. J. Sung, D. Chen, and D. P. Tsai, "High birefringence and low loss circular air-holes photonic crystal fiber using complex unit cells in cladding," Opt. Commun., Vol. 281, 4334-4338, 2008.
doi:10.1093/ietele/e91-c.1.113

12. Hai, N. H., Y. Namihir, F. Begum, S. F. Kaijage, T. Kinjo, S. M. A. Razzak, and N. Zou, "A novel photonic crystal fiber design for large effective area and high negative dispersion," IEICE Trans. Electron., Vol. E91-C, 113-116, 2008.

13. Guenneau, S., A. Nicolet, F. Zolla, and S. Lasquellec, "Numerical and theoretical study of photonic crystal fibers," Progress In Electromagnetics Research, Vol. 41, 271-305, 2003.
doi:10.2528/PIERL09061804

14. Wu, J.-J., D. Chen, K.-L. Liao, T.-J. Yang, and W.-L. Ouyang, "The optical properties of Bragg fiber with a fiber core of 2-dimention elliptical-hole photonic crystal structure," Progress In Electromagnetics Research Letters, Vol. 10, 87-95, 2009.
doi:10.1016/j.optcom.2007.09.041

15. Haxha, S. and H. Ademgil, "Novel design of photonic crystal fibers with low confinement losses, nearly zero ultra-flatted chromatic dispersion, negative chromatic dispersion and improved effective mode area," Opt. Commun., Vol. 281, 278-286, 2008.
doi:10.1016/j.optcom.2007.12.006

16. Chen, M. and S. Xie, "New nonlinear and dispersion flattened photonic crystal fiber with low confinement loss," Opt. Commun., Vol. 281, 2073-2076, 2008.
doi:10.1016/j.optcom.2005.08.008

17. Chiang, J. S. and T. L. Wu, "Analysis of propagation characteristics for an octagonal photonic crystal fiber (O-PCF)," Opt. Commun., Vol. 258, 170-176, 2006.
doi:10.1016/j.optcom.2007.09.035

18. Musin, R. R. and A. M. Zheltikov, "Designing dispersion-compensating photonic-crystal fibers using a genetic algorithm," Opt. Commun., Vol. 281, 567-572, 2008.

19. Kim, S., C. S. Kee, D. K. Ko, J. Lee, and K. Oh, "A dual-concentric-core photonic crystal fiber for broadband dispersion compensation," J. Korean Phys. Soc., Vol. 49, 1434-1437, 2006.
doi:10.1364/OE.16.000007

20. Cho, M., J. Kim, H. Park, Y. Han, K. Moon, E. Jung, and H. Han, "Highly birefringent terahertz polarization maintaining plastic photonic crystal fibers," Opt. Express, Vol. 16, 7-12, 2008.
doi:10.1364/OE.9.000676

21. Suzuki, K., H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, "Optical properties of a low-loss polarization-maintaining photonic crystal fiber," Opt. Express, Vol. 9, 676-680, 2001.
doi:10.1049/el:20046362

22. Ortigosa-Blanch, A., A. Diez, M. Delgado-Pinar, J. L. Cruz, and M. V. Andres, "Temperature independence of birefringence and group velocity dispersion in photonic crystal fibers," Electron. Lett., Vol. 40, 1327-1329, 2004.
doi:10.2529/PIERS060910211527

23. Song, W., Y. Zhao, Y. Bao, S. Li, Z. Zhang, and T. Xu, "Numerical simulation and analysis on mode property of photonic crystal fiber with high birefringence by fast multipole method," PIERS Online, Vol. 3, No. 6, 836-841, 2007.
doi:10.2529/PIERS041209062952

24. Wang, L. and D. X. Yang, "A new design for terahertz photonic crystal fiber using the finite-difference time-domain method," PIERS Online, Vol. 1, No. 2, 133-136, 2005.

25. Wu, J.-J., T.-J. Yang, K.-L. Liao, D. Chen, and L. F. Shen, "Highly birefringent Bragg fiber with a fiber core of 2-dimension elliptical-hole photonic crystal structure," PIERS Proceedings, 185-188, Beijing, China, Mar. 23-27, 2009.

26. Chu, S. T. and S. K. Chaudhuri, "Finite-difference time-domain method for optical waveguide analysis," Progress In Electromagnetics Research, Vol. 11, 255-300, 1995.
doi:10.2528/PIER04042901

27. Kashani, Z. G., N. Hojjat, and M. Shahabadi, "Full-wave analysis of coupled waveguides in a two-dimensional photonic crystal," Progress In Electromagnetics Research, Vol. 49, 291-307, 2004.
doi:10.1163/156939307783134452

28. Manzanares-Martínez, J. and J. Gaspar-Armenta, "Direct integration of the constitutive relations for modeling dispersive metamaterials using the finite difference time-domain technique," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 15, 2297-2310, 2007.
doi:10.2528/PIER05062103

29. Zheng, G., A. A. Kishk, A. W. Glisson, and A. B. Yakovlev, "Implementation of Mur's absorbing boundaries with periodic structures to speed up the design process using finite-difference time-domain method," Progress In Electromagnetics Research, Vol. 58, 101-114, 2006.
doi:10.2528/PIERB08121603

30. El-Mashade, M. B. and M. N. Abdel Aleem, "Analysis of ultra-short pulse propagation in nonlinear optical fiber," Progress In Electromagnetics Research B, Vol. 12, 219-241, 2009.
doi:10.2528/PIERB09012302

31. Sha, W. E. I., X.-L. Wu, Z.-X. Huang, and M.-S. Chen, "Waveguide simulation using the high-order symplectic finite-difference time-domain scheme," Progress In Electromagnetics Research B, Vol. 13, 237-256, 2009.

32. Wei, B., S.-Q. Zhang, Y.-H. Dong, and F. Wang, "A general FDTD algorithm handling thin dispersive layer," Progress In Electromagnetics Research B, Vol. 18, 243-257, 2009.

33. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, 3rd Ed., Artech House, Boston, 2005.

34. Agrawal, G. P., Nonlinear Fiber Optics, 4th Ed., Academic Press, Boston, 2007.
doi:10.1016/j.optlastec.2007.09.012

35. Li, S., Y. Li, Y. Zhao, G. Zhou, Y. Han, and L. Hou, "Correlation between the birefringence and the structural parameter in photonic crystal fiber," Opt. and Laser Technol., Vol. 40, 663-667, 2008.
doi:10.1364/OE.11.002799

36. Hwang, I. K., Y. J. Lee, and Y. H. Lee, "Birefringence induced by irregular structure in photonic crystal fiber," Opt. Express, Vol. 11, 2799-2806, 2003.

37. Keiser, G., Optical Fiber Communications, 3rd Ed., McGraw-Hill, New York, 2000.

38. Seraji, F. E., M. Rashidi, and M. Karimi, "Characteristics of holey fibers fabricated at different drawing speeds," Chinese Opt. Lett., Vol. 5, 131-134, 2007.