Vol. 90
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2009-02-10
Uncertainty Analysis of the Rational Function Model Used in the Complex Permittivity Measurement of Biological Tissues Using PMCT Probes Within a Wide Microwave Frequency Band
By
Progress In Electromagnetics Research, Vol. 90, 137-150, 2009
Abstract
The PMCT probe, saying, one kind of open-ended coaxial probe adopted widely in microwave coagulation therapy of cancer, has been used to measure the complex permittivity of freshly excised specimens of normal animal tissues. The RFM model for PMCT probe is developed to extract the anticipant permittivity of specimens under test. In addition, the effects of several factors on the measurement results have been considered and discussed, including different temperature and reference materials, as well as the sampling frequency range and intervals of the rational function model. All the experiments have been conducted at the microwave frequency range from 450 MHz to 14.5 GHz.
Citation
Zhanxian Wang, Wenquan Che, and Lixue Zhou, "Uncertainty Analysis of the Rational Function Model Used in the Complex Permittivity Measurement of Biological Tissues Using PMCT Probes Within a Wide Microwave Frequency Band," Progress In Electromagnetics Research, Vol. 90, 137-150, 2009.
doi:10.2528/PIER09010403
References

1. Wang, Y. and M. Afsar, "Measurement of complex permittivity of liquids using waveguides techniques," Journal of Electromagnetic Waves and Applications, Vol. 17, No. 9, 1311-1312, Sept. 2003.
doi:10.1163/156939303322520052

2. Fukes, P., G. Kristensson, and G. Larson, "Permittivity profile reconstruction using transient electromagnetic reflection data," Journal of Electromagnetic Waves and Applications, Vol. 12, No. 2, 245-248, Feb. 1998.
doi:10.1163/156939398X00818

3. Stuchly, M. and S. Stuchly, "Coaxial line reflection methods for measuring dielectric properties of biological substances at radio and microwave frequencies: A review," IEEE Trans. Instrum. Meas., Vol. 29, No. 9, 176-183, 1980.
doi:10.1109/TIM.1980.4314902

4. Athey, T., M. Stuchly, and S. Stuchly, "Measurement of radio frequency permittivity of biological tissues with an open-ended coaxial line: Part I," IEEE Trans. Microwave Theory Tech., Vol. 30, No. 1, 82-86, Jan. 1982.
doi:10.1109/TMTT.1982.1131021

5. Fear, E. and M. Stuchly, "Microwave detection of breast cancer," IEEE Trans. Microwave Theory Tech., Vol. 48, No. 11, 1854-1863, Nov. 2000.

6. Popovic, D. and M. Okoniewski, "Effects of mechanical flaws in open-ended coaxial probes for dielectric spectroscopy," IEEE Microwave Wireless Component Letters, Vol. 12, No. 10, 401-403, Oct. 2002.
doi:10.1109/LMWC.2002.803192

7. Stuchly, S., C. Sibbald, and J. Anderson, "A new aperture admittance model for open-ended waveguides," IEEE Trans. Microwave Theory Tech., Vol. 42, No. 2, 192-198, Feb. 1994.
doi:10.1109/22.275246

8. Anderson, J., C. Sibbald, and S. Stuchly, "Dielectric measurements using a rational function model," IEEE Trans. Microwave Theory Tech., Vol. 42, No. 2, 199-204, Feb. 1994.
doi:10.1109/22.275247

9. Colpitts, B., "Temperature sensitivity of coaxial probe complex permittivity measurements: Experimental approach," IEEE Trans. Microwave Theory Tech., Vol. 41, No. 2, 229-234, Feb. 1993.
doi:10.1109/22.216461

10. Gabriel, C., T. Chan, and E. Grant, "Admittance models for open-ended coaxial probes and their places in the dielectric spectroscopy," Phys. Med. Biol., Vol. 39, No. 6, 2183-2200, Jun. 1994.
doi:10.1088/0031-9155/39/12/004

11. Nyshadham, A., C. Sibbald, and S. Stuchly, "Permittivity measurements using open-ended sensors and reference liquid calibration | An uncertainty analysis," IEEE Trans. Microwave Theory Tech., Vol. 40, No. 2, 305-315, Feb. 1992.
doi:10.1109/22.120103

12. Hagl, D., D. Popovic, S. Hagness, J. Booske, and M. Okoniewski, "Sensing volume of open-ended coaxial probes for dielectric characterization of breast tissue at microwave frequencies," IEEE Trans. Microwave Theory Tech., Vol. 51, No. 4, 1194-1207, Apr. 2003.
doi:10.1109/TMTT.2003.809626

13. Wang, Z. and W. Che, "In-vitro and in-vivo techniques to measure the dielectric constant of biological tissues at microwave frequencies," IEEE ICMMT Proc., Vol. 2, 922-926, Apr. 2008.

14. Olmi, R., M. Bini, R. Nesti, G. Pelosi, and C. Riminesi, "Improvement of the permittivity measurement by a 3D full-wave analysis of a finite flanged coaxial probe," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 2, 217-232, Feb. 2004.
doi:10.1163/156939304323062103

15. Gabriel, S., R. Lau, and C. Gabriel, "The dielectric properties of biological tissues: Part III. Parametric models for the dielectric spectrum of tissue," Phys. Med. Biol., Vol. 41, No. 11, 2271-2293, Nov. 1996.
doi:10.1088/0031-9155/41/11/003