Vol. 89
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2009-01-12
Study on EM Scattering from 2-d Target Above 1-d Large Scale Rough Surface with Low Grazing Incidence by Parallel MoM Based on PC Clusters
By
Progress In Electromagnetics Research, Vol. 89, 149-166, 2009
Abstract
Based on message passing interface (MPI) of the PC Clusters, the parallel method of moment (MOM) is applied to the electromagnetic (EM) scattering from one dimensional (1-D) large scale PEC Gaussian rough surface with two dimensional (2-D) PEC cylinder above it with low grazing incidence. The conjugate gradient method (CGM) for solving MOM matrix equation is parallelized according to the property of MPI in this work. The parallel computational efficiency and validity are shown by several numerical simulations, in which it is proved that the proposed method supplies a novel technique for solving the problem of the composite EM scattering for a 2-D target above 1-D large scale rough surface. Finally, the influences of root mean square (rms) height, the correlation length of the Gaussian surface, the size and the altitude of the cylinder, the polarization on the bistatic scattering coefficient (BSC) for low grazing incidence are also discussed in detail.
Citation
Li-Xin Guo, Anqi Wang, and Jun Ma, "Study on EM Scattering from 2-d Target Above 1-d Large Scale Rough Surface with Low Grazing Incidence by Parallel MoM Based on PC Clusters," Progress In Electromagnetics Research, Vol. 89, 149-166, 2009.
doi:10.2528/PIER08121002
References

1. Guo, L. X. and Z. S. Wu, "Application of the extended boundary condition method to electromagnetic scattering from rough dielectric fractal sea surface," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 9, 1219-1234, 2004.
doi:10.1163/1569393042955342

2. Kizilay, A. and S. Makal, "A neural network solution for identification and classification of cylindrical targets above perfectly conducting flat surfaces," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 14, 2147-2156, 2007.
doi:10.1163/156939307783152759

3. Li, J., L. X. Guo, and H. Zeng, "FDTD investigation on bistatic scattering froma target above two-layered rough surfaces using UPML absorbing condition," Progress In Electromagnetics Research, Vol. 88, 197-211, 2008.
doi:10.2528/PIER08110102

4. Li, X. F., Y. J. Xie, and R. Yang, "High-frequency method analysison scattering from homogenous dielectric objects with electricallylarge size in half space," Progress In Electromagnetics Research B, Vol. 1, 177-188, 2008.
doi:10.2528/PIERB07103001

5. Li, J., L. X. Guo, and H. Zeng, "FDTD investigation on the electromagnetic scattering from a target above a randomly rough sea surface," Waves in Random and Complex Media, Vol. 18, No. 4, 641-650, 2008.
doi:10.1080/17455030802302134

6. Chen, X. J. and X. W. Shi, "Backscattering of electrically large perfect conducting targets modeled by NURBS surfaces in half-space," Progress In Electromagnetics Research, Vol. 77, 215-224, 2007.
doi:10.2528/PIER07081602

7. Zhang, Y., Y. E. Yang, H. Braunisch, and J. A. Kong, "Electromagnetic wave interaction of conducting object with rough surface by hybrid SPM/MOM technique," Progress In Electromagnetics Research, Vol. 22, 315-335, 1999.
doi:10.2528/PIER98112506

8. Wang, X., C. F. Wang, Y. B. Gan, and L. W. Li, "Electromagnetic scattering froma circular target above or below rough surface," Progress In Electromagnetics Research, Vol. 40, 207-227, 2003.
doi:10.2528/PIER02111901

9. Chiu, T. and K. Sarabandi, "Electromagnetic scattering interaction between a dielectric cylinder and a slightly rough surface," IEEE Trans. Antennas Propag., Vol. 47, No. 5, 902-913, 1999.
doi:10.1109/8.774155

10. Harrington, R. F., Filed Computation by Moment Method, IEEE Press, New York, 1993.

11. Pino, M. R., L. Landesa, J. L. Rodriguez, F. Obelleiro, and R. J. Burkholder, "The generalized forward-backward method for analyzing the scattering from targets on ocean-like rough surfaces," IEEE Trans. Antennas Propag., Vol. 47, No. 6, 961-969, 1999.
doi:10.1109/8.777118

12. Li, Z. and Y.-Q. Jin, "Bistatic scattering froma fractal dynamic rough sea surface with a ship presence at low grazing angle incidence using the GFBM/SAA," Microwave Opt. Technol. Lett., Vol. 31, No. 2, 146-151, 2001.
doi:10.1002/mop.1383

13. Tsang, L., C. H. Chan, K. Pak, and H. Sangani, "Monte-Carlo simulations of large-scale problems of random rough surface scattering and applications to grazing incidence with the BMIA/canonical grid method," IEEE Trans. Antennas Propag., Vol. 43, No. 8, 851-859, 1995.
doi:10.1109/8.402205

14. Chan, C. H. and L. Tsang, "Monte-Carlo simulations of large-scale one-dimensional random rough surface scattering at near-grazing incidence: Penetrable case," IEEE Trans. Antennas Propag., Vol. 46, No. 1, 142-149, 1998.
doi:10.1109/8.655461

15. Li, Q., C. H. Chan, and L. Tsan, "Monte Carlo simulations of wave scattering from lossy dielectric random rough surfaces using the physics-based two-grid method and the canonical-grid method," IEEE Trans. Antennas Propag., Vol. 47, No. 4, 752-763, 1999.
doi:10.1109/8.768816

16. Johnson, J. T., "Numerical study of scattering from an object above a rough surface," IEEE Trans. Antennas Propag., Vol. 50, No. 10, 1361-1367, 2002.
doi:10.1109/TAP.2002.802152

17. Hestenes, M. R. and E. Stiefel, "Method of conjugate gradients for solving linear systems," J. Res. Natl. Bur. Stand., Vol. 49, 409-436, 1952.

18. Thorsos, E., "The validity of the Kirchhoff approximation for rough surface scattering using a Gaussian roughness spectrum," J. Acoust Soc. Am., Vol. 83, No. 1, 78-92, 1988.
doi:10.1121/1.396188

19. Tsang, L., J. A. Kong, K.-H. Ding, and C. O. Ao, Scattering of Electromagnetic Waves: Numerical Simulations, John Wiley & Sons, 2001.

20. Ye, H. and Y.-Q. Jin, "Parameterization of the tapered incident wave for numerical simulation of electromagnetic scattering from rough surface," IEEE Trans. Antennas Propag., Vol. 53, No. 3, 1234-1237, 2005.
doi:10.1109/TAP.2004.842586

21. Message Passing Interface Forum, MPI: A message-passing interface, June 1995. http://www. mpi-forum.org/docs/mpi-11-html/mpi-report.html.

22. Lauria, M. and A. Chien, "MPI-FM: High performance MPI on workstation clusters," Journal of Parallel and Distributed Computing, Vol. 40, 4-18, 1997.
doi:10.1006/jpdc.1996.1264

23. Rokhlin, V., "Rapid solution of integral equations of scattering theory in two dimensions," J. Comput. Phys., Vol. 86, 414-439, 1990.
doi:10.1016/0021-9991(90)90107-C

24. Lu, C. C. and W. C. Chew, "Fast algorithmfor solving hybrid integral equations," IEE Proceedings-H, Vol. 140, 455-460, 1993.

25. Li, S. Q., C. H. Chan, and M. Y. Xia, "Multilevel expansion of the sparse-matrix canonical grid method for two-dimensional random rough surfaces," IEEE Trans. Antennas Propag., Vol. 49, No. 11, 1579-1589, 2001.
doi:10.1109/8.964094

26. Xia, M. Y., C. H. Chan, S. Q. Li, B. Zhang, and L. Tsang, "An efficient algorithmfor electromagnetic scattering from rough surfaces using a single integral equation and multilevel sparse-matrix canonical-grid method," IEEE Trans. Antennas Propag., Vol. 51, No. 6, 1142-1149, 2003.
doi:10.1109/TAP.2003.812238