Vol. 46
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2004-06-08
A General Framework for Constraint Minimization for the Inversion of Electromagnetic Measurements
By
Progress In Electromagnetics Research, Vol. 46, 265-312, 2004
Abstract
In this paper, we developed a general framework for the inversion of electromagnetic measurements in cases where parametrization of the unknown configuration is possible. Due to the ill-posed nature of this nonlinear inverse scattering problem, this parametrization approach is needed when the available measurement data are limited and measurements are only carried out from limited transmitter-receiver positions (limited data diversity). By carrying out this parametrization, the number of unknown model parameters that need to be inverted is manageable. Hence the Newton based approach can advantageously be used over gradient-based approaches. In order to guarantee an error reduction of the optimization process, the iterative step is adjusted using a line search algorithm. Further unlike the most available Newton-based approaches available in the literature, we enhanced the Newton based approaches presented in this paper by constraining the inverted model parameters with nonlinear transformation. This constrain forces the reconstruction of the unknown model parameters to lie within their physical bounds. In order to deal with cases where the measurements are redundant or lacking sensitivity to certain model parameters causing non-uniqueness of solution, the cost function to be minimized is regularized by adding a penalty term. One of the crucial aspects of this approach is how to determine the regularization parameter determining the relative importance of the misfit between the measured and predicted data and the penalty term. We reviewed different approaches to determine this parameter and proposed a robust and simple way of choosing this regularization parameter with aid of recently developed multiplicative regularization analysis. By combining all the techniques mentioned above we arrive at an effective and robust parametric algorithm. As numerical examples we present results of electromagnetic inversion at induction frequency in the deviated borehole configuration.
Citation
Tarek Habashy, and Aria Abubakar, "A General Framework for Constraint Minimization for the Inversion of Electromagnetic Measurements," Progress In Electromagnetics Research, Vol. 46, 265-312, 2004.
doi:10.2528/PIER03100702
References

1. Tarantola, A., Inverse Problem Theory, Elsevier, 1987.

2. Goldberg, D. E., Genetic Algorithms in Search, Optimization and Machine Learning, 1989.

3. Abubakar, A. and P. M. van den Berg, "Three dimensional nonlinear inversion in cross-well electrode logging," Radio Science, Vol. 33, No. 4, 989-1004, 1998.
doi:10.1029/98RS00975

4. Abubakar, A., P. M. van den Berg, and B. J. Kooij, "A conjugate gradient contrast source technique for 3D profile inversion," IEICE Transactions on Electronics, 1864-1877, 2000.

5. Abubakar, A., P. M. van den Berg, and S. Y. Semenov, "Two-and three-dimensional algorithms for microwave imaging and inverse scattering," Journal of Electromagnetic Waves and Applications, Vol. 17, No. 2, 209-231, 2003.
doi:10.1163/156939303322235798

6. Barkeshli, S. and R. G. Lautzenheiser, "An iterative method for inverse scattering problems based on an exact gradient search," Radio Science, Vol. 29, 1119-1130, 1994.
doi:10.1029/94RS00830

7. Chew, W. C. and Y. M. Wang, "Reconstruction of twodimensional permittivity distribution using the distorted Born iterative method," IEEE Transactions on Medical Imaging, Vol. 9, 218-225, 1990.
doi:10.1109/42.56334

8. Isernia, T., V. Pascazio, and R. Pierri, "On the local minima in a tomographic imaging technique," IEEE Transactions on Geoscience and Remote Sensing, Vol. 39, 1596-1607, 2001.
doi:10.1109/36.934091

9. Kleinman, R. E. and P. M. van den Berg, "A modified gradient method for two-dimensional problems in tomography," Journal of Computational and Applied Mathematics, Vol. 42, 17-35, 1992.
doi:10.1016/0377-0427(92)90160-Y

10. Liu, Q. H. and W. C. Chew, "Applications of the CG-FFHT method with an improved FHT algorithm," Radio Science, Vol. 29, 1009-1022, 1994.
doi:10.1029/93RS03592

11. Zhdanov, M. S. and G. Hursan, "3D electromagnetic inversion based on quasi-analytical approximation," Inverse Problems, Vol. 16, 1297-1322, 2000.
doi:10.1088/0266-5611/16/5/311

12. Van den Berg, P. M. and A. Abubakar, "Contrast source inversion method: State of art," Progress in Electromagnetics Research, Vol. 34, 189-218, 2001.
doi:10.2528/PIER01061103

13. Van den Berg, P. M., A. Abubakar, and J. T. Fokkema, "Multiplicative regularization for contrast profile inversion," Radio Science, Vol. 38, No. 2, 1-23, 2003.
doi:10.1029/2001RS002555

14. Franchois, A. and C. Pichot, "Microwave imaging — Complex permittivity reconstruction with Levenberg-Marquardt method," IEEE Transactions on Antennas and Propagation, Vol. 45, 203-215, 1997.
doi:10.1109/8.560338

15. Habashy, T. M., M. L. Oristaglio, and A. T. de Hoop, "Simultaneous nonlinear reconstruction of two-dimensional permittivity and conductivity," Radio Science, Vol. 29, 1101-1118, 1994.
doi:10.1029/93RS03448

16. Dennis Jr., J. E. and R. B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Prentice Hall, 1983.

17. Gill, P. E., W. Murray, and M. H. Wright, Practical Optimization, Academic Press, 1981.

18. Golub, G. H. and C. F. Van Loan, Matrix Computations, The Johns Hopkins University Press, 1993.

19. Habashy, T. M., W. C. Chew, and E. Y. Chow, "Simultaneous reconstruction of permittivity and conductivity profiles in a radially inhomogeneous slab," Radio Science, Vol. 21, 635-645, 1986.

20. Oldenburg, D. W., "Inversion of electromagnetic data: An overview of new techniques," Surveys in Geophysics, Vol. 11, 231-270, 1990.
doi:10.1007/BF01901661

21. Press, W. H., S. A. Teukol, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in FORTRAN, 77, 1992.

22. Fletcher, R., Practical Methods of Optimization: Volume I, Unconstrained Optimization, 1980.

23. Luenberger, D. G., Linear and Nonlinear Programming, Addison- Wesley, 1984.

24. Rudin, L., S. Osher, and C. Fatemi, "Nonlinear total variation based on noise removal algorithm," Physica, Vol. 30D, 259-268, 1992.

25. Chan, T. F. and C. K. Wong, "Total variation blind deconvolution," IEEE Transactions on Image Processing, Vol. 7, 370-375, 1998.
doi:10.1109/83.661187

26. Broyden, C. G., Mathematics of Computation, Vol. 19, 577-593, Vol. 19, 1965.

27. Scharf, L. L., Statistical Signal Processing, Detection, 1991.

28. Druskin, V., L. A. Knizhnerman, and P. Lee, "New spectral Lanczos decomposition method for induction modeling in arbitrary 3-D geometry," Geophysics, Vol. 64, No. 3, 701-706, 1999.
doi:10.1190/1.1444579

29. Van der Horst, M., V. Druskin, and L. Knizhnerman, "Modeling induction logs in 3D geometres," Three-Dimensional Electromagnetics, 611-622, 1999.

30. Anderson, B. I.T. D. Barber, and T. M. Habashy, "The interpretation and inversion of fully triaxial induction data; A sensitivity study," SPWLA 43rd Annual Logging Symposium, 2-5, 2003.

31. Spies, B. R. and T. M. Habashy, "Sensitivity analysis of crosswell electromagnetics," Geophysics, Vol. 60, No. 3, 834-845, 1995.
doi:10.1190/1.1443821

32. Anderson, B. I., S. Bonner, M. Luling, and R. Rosthal, "Response of 2-MHz LWD resistivity and wireline induction tools in dipping beds and laminated formations," The Log Analyst, Vol. 33, No. 5, 461-475.

33. Habashy, T. M. and M. G. Luling, "A point magnetic dipole radiator in a layered, TI-Anisotropic medium," Schlumberger-Doll Research Note, 001-94, 1994.