Vol. 46
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2004-06-08
Contact Geometry in Electromagnetism
By
, Vol. 46, 77-104, 2004
Abstract
In the first part of this work we show that, by working in Fourier space, the Bohren decomposition and the Helmholtz's decomposition can be combined into one decomposition. This yields a completely mathematical decomposition, which decomposes an arbitrary vector field on ℜ3 into three components. A key property of the decomposition is that it commutes both with the curl operator and with the time derivative. We can therefore apply this decomposition to Maxwell's equations without assuming anything about the media. As a result, we show that Maxwell's equations split into three completely uncoupled sets of equations. Further, when a medium is introduced, these decomposed Maxwell's equations either remain uncoupled, or become coupled depending on the complexity of the medium. In the second part of this work, we give a short introduction to contact geometry and then study its relation to electromagnetism. By studying examples, we show that the decomposed fields in the decomposed Maxwell's equations always seem to induce contact structures. For instance, for a plane wave, the decomposed fields are the right and left hand circulary polarized components, and each of these induce their own contact structure. Moreover, we show that each contact structure induces its own Carnot-Carathéodory metric, and the path traversed by the circulary polarized waves seem to coincide with the geodesics of these metrics. This article is an abridged version of the author's master's thesis written under the instruction of Doctor Kirsi Peltonen and under the supervision of Professor Erkki Somersalo.
Citation
Matias Dahl, "Contact Geometry in Electromagnetism," , Vol. 46, 77-104, 2004.
doi:10.2528/PIER03070801
References

1. Lindell, I. V., Methods for Electromagnetic Field Analysis, Clarendon Press, 1992.

2. Lindell, I. V., A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-Isotropic Media, Artech House, 1994.

3. Hegstrom, R. A. and D. K. Kondepudi, "The handedness of the universe," Scientific American, No. 1, 98-105, 1990.

4. Gardner, M., The Ambidextrous Universe, Allen Lane, 1967.

5. Hargittai, I. and C. A. Pickover (eds.), Spiral Symmetry, World Scientific, 1992.

6. Moses, H. E., "Eigenfunctions of the curl operator; rotationally invariant Helmholtz theorem, and applications to electromagnetic theory and fluid mechanics," SIAM Journal of Applied Mathematics, Vol. 21, No. 1, 1971.
doi:10.1137/0121015

7. Waleffe, F., "The nature of triad interactions in homogeneous turbulence," Physics of Fluids A, Vol. 4, No. 2, 1992.

8. MacLeod, M. A., "The spherical curl transform of a linear forcefree magnetic field," Journal of Mathematical Physics, Vol. 39, No. 3, 1998.
doi:10.1063/1.532305

9. MacLeod, M. A., "A new description of force-free magnetic field," Journal of Mathematical Physics, Vol. 36, No. 6, 1995.
doi:10.1063/1.531003

10. Constantin, P. and A. Majda, "The Beltrami spectrum for incompressible fluid flows," Communications in Mathematical Physics, Vol. 115, 435-456, 1998.
doi:10.1007/BF01218019

11. Dahl, M., "Contact and symplectic geometry in electromagnetism," Master's thesis, 2002.

12. Arnold, V. I. and B. A. Keshin, "Topological methods in hydrodynamics," Applied Mathematical Sciences, 1998.

13. Baldwin, P. R. and G. M. Townsend, "Complex Trkalian fields and solutions to Euler's equations for the ideal fluid," Physical Review E, Vol. 51, No. 3, 2059-2068, 1995.
doi:10.1103/PhysRevE.51.2059

14. Tsui, K. H., "Force-free field model of ball lightning," Physics of Plasmas, Vol. 8, No. 3, 687-689, 2001.
doi:10.1063/1.1343511

15. Bellan, P. M., Spheromaks, A practical Application ofMagnetohydrodynamic Dynamos and Plasma Self-Organization, 2000.

16. Reed, D., Foundational Electrodynamics and Beltrami fields in in Advanced Electromagnetism: Foundations, Theory, and Applications, 1995.

17. Lakhtakia, A., Beltrami fields in Chiral Media, World Scientific, 1994.

18. Etnyre, J. and R. Ghrist, "Contact topology and hydrodynamics.," Nonlinearity, Vol. 13, No. 2, 441-458, 2000.
doi:10.1088/0951-7715/13/2/306

19. Stein, E. M. and G. Weiss, Introduction to Fourier Analysis on Euclidian Spaces, Princeton University Press, 1971.

20. Van Bladel, J., "A discussion on Helmholtz' theorem," Electromagnetics, Vol. 13, 95-110, 1993.

21. McDuff, D. and D. Salamon, Introduction to Symplectic Topology, Clarendon Press, 1997.

22. Madsen, I. and J. Tornehave, From Calculus to Cohomology, Cambridge University Press, 1997.

23. Boothby, W. M., An Introduction to Differentiable Manifolds and Riemannian Geometry, Academic Press, 1986.

24. Frankel, T., Geometry ofPhysics, Cambridge University Press, 1997.

25. Thirring, W., A Course in Mathematical Physics 2: Classical Field Theory, Springer-Verlag, 1978.
doi:10.1016/S0723-0869(01)80014-1

26. Geiges, H., "A brief history of contact geometry and topology," Expositiones Mathematicae, Vol. 19, 25-53, 2001.
doi:10.1016/S0723-0869(01)80014-1

27. Bellaïche, A. and J-J. Risler (eds.), Sub-Riemannian Geometry, Birkhäuser, 1996.
doi:10.1016/S0926-2245(02)00059-1

28. Beltran, J. V., "Star calculus on Jacobi manifolds," Differential Geometry and Its Applications, Vol. 16, 181-198, 2002.
doi:10.1016/S0926-2245(02)00059-1