Vol. 68
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-05-29
EMF Exposure Analysis for a Compact Multi-Band 5G Antenna
By
Progress In Electromagnetics Research M, Vol. 68, 193-201, 2018
Abstract
The fifth generation (5G) wireless communication systems are projected to work at millimeter wave (mm-wave) frequency bands that would bring new challenges with the implementation of antennas and safety level of electromagnetic field exposures. In this paper, a new design of 5G mmwave antenna for multi-frequency bands has been introduced. The antenna is small enough and has a form factor that can be easily fit into the current available mobile handset devices. The proposed antenna covers all the nominated frequency bands by the FCC for 5G communications and has good radiation performances at 28 GHz, 37 GHz, 39 GHz, and 64-71 GHz. The electromagnetic field exposure to the human head model has been studied by means of numerical simulation for all above frequency bands. The feature of our proposed antenna is that all the frequency bands for the 5th generation mobile handset will be available in a single and simple antenna structure; hence, analysis of EMF exposure in a wide range of frequency can be done on a single antenna design.
Citation
Kamya Yekeh Yazdandoost, and Ilkka Laakso, "EMF Exposure Analysis for a Compact Multi-Band 5G Antenna," Progress In Electromagnetics Research M, Vol. 68, 193-201, 2018.
doi:10.2528/PIERM18041002
References

1. Daniels, R. C. and R. W. Heath, "60 GHz wireless communications: Emerging requirements and design recommendations," IEEE Veh. Technol. Mag., Vol. 2, No. 3, 41-50, 2008.
doi:10.1109/MVT.2008.915320

2., https://apps.fcc.gov/edocs_public/attachmatch/DOC-340301A1.pdf.
doi:10.1109/MVT.2008.915320

3. Hong, W., "Solving the 5G mobile antenna puzzle: Assessing future directions for the 5G mobile antenna paradigm shift," IEEE Micro. Mag., Vol. 18, No. 7, 86-102, 2017.
doi:10.1109/MMM.2017.2740538

4. Rappaport, T. S., S. Sun, and R. Mayzus, "Millimeter wave mobile communications for 5G cellular: It will work!," IEEE Access, Vol. 1, 335-349, 2013.
doi:10.1109/ACCESS.2013.2260813

5. International Commission on Non-Ionizing Radiation Protection, Health Physics "Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz)," Health Phys., Vol. 74, No. 4, 494-522, 1998.

6. FCC "Code of Federal Regulations CFR title 47, part 1.1310,", 2010.

7. "Standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz,", IEEE C95.1, 2005.

8. Bahramzy, P., S. Svendsen, O. Jagielski, and G. Frlund Pedersen, "SAR study of mobile phones as a function of antenna Q," IEEE Trans. on Antennas and Propaga., Vol. 63, No. 9, 4139-4147, 2015.
doi:10.1109/TAP.2015.2452959

9. Lazarescu, C., I. Nica, and V. David, "SAR in human head due to mobile phone exposure," E-Health and Bioengineering Conference, 2011.

10. Chen, I.-F., C.-M. Peng, and C.-C. Hung, "Experimental study of estimating SAR values for mobile phone applications," IEEE Antennas and Propagation Society International Symposium, 2008.

11. Mihai, G., A. Marian Aron, V. Haralambie, and A. Paljanos, "A study of mobile phone SAR levels modification in different experimental configurations under 2G and 3G communication standards," International Conference on Communications, 2016.

12. Takei, R., T. Nagaoka, K. Saito, S. Watanabe, and M. Takahashi, "SAR variation due to exposure from a smartphone held at various positions near the torso," IEEE Trans. on Electromagnetic Compatibility, Vol. 59, No. 2, 747-753, 2017.
doi:10.1109/TEMC.2016.2642201

13. Cihangir, A., C. J. Panagamuwa, W. G. Whittow, G. Jacquemod, F. Gianesello, R. Pilard, and C. Luxey, "Dual-band 4G eyewear antenna and SAR implications," IEEE Trans. on Antennas and Propagat., Vol. 65, No. 4, 2085-2089, 2017.
doi:10.1109/TAP.2017.2670562

14. Derat, B., "Experimental study on the relationship between Specific Absorption Rate and RF conducted power for LTE wireless devices," European Microwave Conference, 2015.

15. Oliveira, C., M. Maćkowiak, and L. M. Correia, "Exposure assessment of smartphones and tablets," International Symposium on Wireless Communication Systems, 2015.

16. Chu, F. H. and K. L.Wong, "Planar printed strip monopole with a closely-coupled parasitic shorted strip for eight-band LTE/GSM/UMTS mobile phone," IEEE Trans. Antennas and Propagat., Vol. 58, 3431-3462, 2010.

17. Azad, M. Z. and M. Ali, "A miniaturized Hilbert PIFA for dual-band mobile wireless applications," IEEE Antennas Wireless Propaga. Lett., Vol. 4, 59-62, 2005.
doi:10.1109/LAWP.2005.844128

18. Wong, K. L. and C. H. Chang, "Printed λ/8-PIFA for penta-band WWAN operation in the mobile phone," IEEE Trans. Antennas and Propagat., Vol. 57, 1373-1381, 2009.

19. Chu, F. H. and K. L. Wong, "On-board small-size printed LTE/WWAN mobile handset antenna closely integrated with system ground plane," Micro. Opt. Technol. Lett., Vol. 53, 1336-1343, 2011.
doi:10.1002/mop.25961

20. Wong, K.-L., G.-Y. Lee, and T.-W. Chiou, "A low-profile planar monopole antenna for multiband operation of mobile handsets," IEEE Trans. Antennas and Propagat., Vol. 51, 121-125, 2003.
doi:10.1109/TAP.2003.809044

21. Chiu, C. H., C. H. Chang, and Y. J. Chi, "Multiband folded loop antenna for smart phones," Progress In Electromagnetic Research, Vol. 102, 213-226, 2010.
doi:10.2528/PIER10011601

22. Trinh, L. H., F. Ferrero, R. Staraj, and J.-M. Ribero, "Mobile phone antenna for 2G, 3G and 4G standards," International Conference on Advanced Technologies for Communications, 2013.

23., https://www.ansys.com/-/media/ansys/corporate/resourcelibrary/techbrief/ab-ansys-hfss-for-antenna-simulation.pdf.

24. Colombi, D., B. Thors, and C. Törnevik, "Implications of EMF exposure limits on output power levels for 5G devices above 6 GHz," IEEE Antennas Wireless Propag. Lett., Vol. 14, 1247-1249, 2015.
doi:10.1109/LAWP.2015.2400331

25. http://niremf.ifac.cnr.it/tissprop/htmlclie/htmlclie.php.