Vol. 114
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2023-11-27
Performance Analysis of Relay-Assisted Millimeter-Wave Network in SWIPT-Enabled Massive MIMO-NOMA Systems
By
Progress In Electromagnetics Research Letters, Vol. 114, 51-57, 2023
Abstract
This paper addresses the challenge of improving the digitalisation of 5G communications, with multiple-input-multiple-output (MIMO) non-orthogonal multiple access (NOMA) systems employing relaying, by using simultaneous wireless information and power transfer (SWIPT). In the case of a massive number of users, the connections demand a more efficient network. Therefore, we design a novel framework for a relay-assisted SWIPT NOMA system, to analyze the improvement of SWIPT transmission with NOMA. We derive a closed-form expression for a lower range of spectral efficiencies, assess the performance of the designed system through sum rate analysis, and discuss the power splitting ratio dependence of the performance. Finally, the sum rate is calculated to present the capability of this novel scheme.
Citation
Yulin Zhou, Hua Yan, Chao Wang, Xianmin Zhang, and Qifei Zhang, "Performance Analysis of Relay-Assisted Millimeter-Wave Network in SWIPT-Enabled Massive MIMO-NOMA Systems," Progress In Electromagnetics Research Letters, Vol. 114, 51-57, 2023.
doi:10.2528/PIERL23042603
References

1. Andrews, J. G., S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, Anthony C. K. Soong, and Jianzhong Charlie Zhang, "What will 5G be?," IEEE Journal on Selected Areas in Communications, Vol. 32, No. 6, 1065-1082, 2014.

2. Chen, Xiaoming, Derrick Wing Kwan Ng, Wei Yu, Erik G. Larsson, Naofal Al-Dhahir, and Robert Schober, "Massive access for 5G and beyond," IEEE Journal on Selected Areas in Communications, Vol. 39, No. 3, 615-637, 2021.

3. Wang, Bichai, Linglong Dai, Zhaocheng Wang, Ning Ge, and Shidong Zhou, "Spectrum and energy-efficient beamspace MIMO-NOMA for millimeter-wave communications using lens antenna array," IEEE Journal on Selected Areas in Communications, Vol. 35, No. 10, 2370-2382, 2017.

4. Chen, Liangyu, Bo Hu, Guixian Xu, and Shanzhi Chen, "Energy-efficient power allocation and splitting for mmWave beamspace MIMO-NOMA with SWIPT," IEEE Sensors Journal, Vol. 21, No. 14, 16381-16394, 2021.

5. Ye, Neng, Xiangming Li, Jianxiong Pan, Wenjia Liu, and Xiaolin Hou, "Beam aggregation-based mmWave MIMO-NOMA: An AI-enhanced approach," IEEE Transactions on Vehicular Technology, Vol. 70, No. 3, 2337-2348, 2021.

6. Liu, Penglu, Yong Li, Wei Cheng, Wenjie Zhang, and Xiang Gao, "Energy-efficient power allocation for millimeter wave beamspace MIMO-NOMA systems," IEEE Access, Vol. 7, 114582-114592, 2019.

7. Zeng, Ming, Animesh Yadav, Octavia A. Dobre, Georgios I. Tsiropoulos, and H. Vincent Poor, "On the sum rate of MIMO-NOMA and MIMO-OMA systems," IEEE Wireless Communications Letters, Vol. 6, No. 4, 534-537, 2017.

8. Makki, Behrooz, Krishna Chitti, Ali Behravan, and Mohamed-Slim Alouini, "A survey of NOMA: Current status and open research challenges," IEEE Open Journal of the Communications Society, Vol. 1, 179-189, 2020.

9. Shahab, Muhammad Basit, Rana Abbas, Mahyar Shirvanimoghaddam, and Sarah J. Johnson, "Grant-free non-orthogonal multiple access for IoT: A survey," IEEE Communications Surveys & Tutorials, Vol. 22, No. 3, 1805-1838, 2020.

10. Muhammed, A. J., Z. Ma, Z. Ding, M. Xiao, P. Fan, W. Xu, G. Liu, and Z. Zhang, "Resource allocation for energy-efficient NOMA system in coordinated multi-point networks," IEEE Transactions on Vehicular Technology, Vol. 70, No. 2, 1577-1591, Feb. 2021.

11. Chen, Xianhao, Gang Liu, Zheng Ma, Xi Zhang, Weiqiang Xu, and Pingzhi Fan, "Optimal power allocations for non-orthogonal multiple access over 5G full/half-duplex relaying mobile wireless networks," IEEE Transactions on Wireless Communications, Vol. 18, No. 1, 77-92, 2019.

12. Tran, D. D., D. B. Ha, V. N. Vo, C. So-In, H. Tran, T. G. Nguyen, Z. A. Baig, and S. Sanguanpong, "Performance analysis of DF/AF cooperative MISO wireless sensor networks with NOMA and SWIPT over Nakagami-m fading," IEEE Access, Vol. 6, 56142-56161, 2018.

13. Zhou, Yulin and Yunfei Chen, "Novel energy-harvesting AF relaying schemes with channel estimation errors," IEEE Systems Journal, Vol. 14, No. 1, 333-342, 2020.

14. Abbasi, Omid, Afshin Ebrahimi, and Nader Mokari, "NOMA inspired cooperative relaying system using an AF relay," IEEE Wireless Communications Letters, Vol. 8, No. 1, 261-264, 2019.

15. Huang, Chongwen, Alessio Zappone, George C. Alexandropoulos, Mérouane Debbah, and Chau Yuen, "Reconfigurable intelligent surfaces for energy efficiency in wireless communication," IEEE Transactions on Wireless Communications, Vol. 18, No. 8, 4157-4170, 2019.

16. Holloway, Christopher L., Edward F. Kuester, and Abdulaziz H. Haddab, "Retrieval approach for determining surface susceptibilities and surface porosities of a symmetric metascreen from reflection and transmission coefficients," Progress In Electromagnetics Research, Vol. 166, 1-22, 2019.

17. Ponnimbaduge Perera, T. D., D. N. K. Jayakody, S. K. Sharma, S. Chatzinotas, and J. Li, "Simultaneous wireless information and power transfer (SWIPT): Recent advances and future challenges," IEEE Communications Surveys & Tutorials, Vol. 20, No. 1, 264-302, 2018.

18. Huang, Jun, Cong-Cong Xing, and Chonggang Wang, "Simultaneous wireless information and power transfer: Technologies, applications, and research challenges," IEEE Communications Magazine, Vol. 55, No. 11, 26-32, 2017.

19. Clerckx, Bruno, Rui Zhang, Robert Schober, Derrick Wing Kwan Ng, Dong In Kim, and H. Vincent Poor, "Fundamentals of wireless information and power transfer: From RF energy harvester models to signal and system designs," IEEE Journal on Selected Areas in Communications, Vol. 37, No. 1, 4-33, 2018.

20. Dai, Linglong, Bichai Wang, Mugen Peng, and Shanzhi Chen, "Hybrid precoding-based millimeter-wave massive MIMO-NOMA with simultaneous wireless information and power transfer," IEEE Journal on Selected Areas in Communications, Vol. 37, No. 1, 131-141, 2019.

21. Al-Obiedollah, H., K. Cumanan, H. B. Salameh, S. Lambotharan, Y. Rahulamathavan, Z. Ding, and O. A. Dobre, "A joint beamforming and power-splitter optimization technique for SWIPT in MISO-NOMA system," IEEE Access, Vol. 9, 33018-33029, 2021.

22. Zhang, Yiming, Hui Liu, Chenyang Meng, Yuxin Lin, Yuan Zhang, Erik Forsberg, and Sailing He, "A novel millimeter-wave backward to forward scanning periodic leaky-wave antenna based on two different radiator types," Progress In Electromagnetics Research, Vol. 168, 31-38, 2020.

23. Arya, Ashwini Kumar, Seong Jin Kim, Sungik Park, Dong-Hoon Kim, Rehab S. Hassan, Kyeongjun Ko, and Sanghoek Kim, "Shark-fin antenna for railway communications in LTE-R, LTE, and lower 5G frequency bands," Progress In Electromagnetics Research, Vol. 167, 83-94, 2020.