Vol. 117
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2023-07-04
Utilization of Pineapple Leaf in Fiber-Based Dielectric Composite Material and Its Elemental Composition Analyses
By
Progress In Electromagnetics Research M, Vol. 117, 163-175, 2023
Abstract
The growing demand for natural fibers in dielectric composite production has accelerated research into plant-based materials, particularly those derived from agricultural waste. Hence, this study attempts to evaluate the effect of processing factors and their elemental composition on the permittivity value of pineapple fiber-based dielectric composites. The dielectric composite was prepared following the randomized experimental conditions of two-level factorial analysis, and the permittivity value was measured using a G-band rectangular waveguide. The most significant factors affecting the permittivity value of the dielectric composites and the best condition were determined. The elemental composition of the dielectric composite was analyzed through an energy dispersive X-ray (EDX) analysis. The best conditions were obtained at a 1:10 ratio of pineapple leaves to distilled water, 50 minutes pulping times with a heating effect, and 5 g of pineapple leaf powder. The highest permittivity value of the composite was recorded at 3.31, with the heating effect as the most significant factor. The elemental analysis of the composite with the highest permittivity value presents that carbon was the dominant element in the composite at 78.05%. The obtained permittivity value exhibited by the composites shows that the pineapple leaf fiber-based dielectric composite could be a potential alternative as an antenna substrate.
Citation
Nurhafizah Abu Talip Yusof, Rudraa Devi Giamasrow, Azahani Natasha Azman, Nor Hazwani Aziz, Norazwina Zainol, and Mohamad Shaiful Abdul Karim, "Utilization of Pineapple Leaf in Fiber-Based Dielectric Composite Material and Its Elemental Composition Analyses," Progress In Electromagnetics Research M, Vol. 117, 163-175, 2023.
doi:10.2528/PIERM23040402
References

1. Ali, N. E. H., "Agricultural Waste Management System [AWMS] in Malaysian," Open Access Journal of Waste Management and Xenobiotics, Vol. 3, No. 2, 2020.
doi:

504 Gateway Time-out


2. Needhidasan, S., M. Samuel, and R. Chidambaram, "Decolorization of textile dyes and dye effluents using Nocardia corallina," Journal of Environmental Health Science and Engineering, Vol. 12, No. 1, Article 36, 2014.
doi:10.1186/2052-336X-12-36

3. Singh, S. P., V. S. Chandel, P. Kumar, and R. Manohar, "Role of agricultural waste management in sustainable development of rural India," Journal of Science and Arts, Vol. 3, No. 28, 255-261, 2014.
doi:

4. Jayamani, E., K. H. Soon, and M. K. Bakri, "Effect of agricultural waste incorporation on the mechanical properties of biodegradable polymer composites," Key Engineering Materials, Vol. 730, 42-47, 2017.
doi:10.4028/www.scientific.net/KEM.730.42

5. Zulkiflli, N. A., F. W. Wee, N. Mahrom, B. S. Yew, Y. S. Lee, S. Z. Ibrahim, and A. L. Am Phan, "The potential of agricultural waste for the production of biocomposite material," MATEC Web of Conferences, Vol. 140, No. 01013, 2017.

6. Upadhyay, A., J. P. Lama, and S. Tawata, "Traditional food processing and preservation methods of Darjeeling hills in India," Journal of Food Science and Technology Nepal, Vol. 6, 10-18, 2013.
doi:10.3126/jfstn.v6i0.8255

7. Baharudin, E., A. Ismail, A. R. H. Alhawari, E. S. Zainudin, D. L. Majid, and F. Che Seman, "Rice husk ash as a potential source for activated carbon production: A review," Advanced Materials Research, Vol. 893, 488-491, 2014.
doi:10.4028/www.scientific.net/AMR.893.488

8. Pattanayak, S. S., S. H. Laskar, and S. Sahoo, "Progress on agricultural residue-based microwave absorber: A review and prospects," Journal of Materials Science, Vol. 56, No. 6, 4097-4119, 2020.
doi:10.1007/s10853-020-05557-8

9. Guna, V. K., G. Murugesan, B. H. Basavarajaiah, M. Ilangovan, S. Olivera, V. Krishna, and N. Reddy, "Plant-based completely biodegradable printed circuit boards," IEEE Transactions on Electron Devices, Vol. 63, No. 12, 4893-4898, 2016.
doi:10.1109/TED.2016.2619983

10. Vasiljevic, T., Chapter 10 --- Pineapple, Valorization of Fruit Processing by-Products, Charis, M. G. (ed), Academic Press, 203-225, 2020.

11. Leao, A. L., S. F. Souza, B. M. Cherian, E. Frollini, S. Thomas, L. A. Pothan, and M. Kottaisamy, "Pineapple leaf fibers for composites and cellulose," Molecular Crystals and Liquid Crystals, Vol. 522, No. 1, 36-41, 2010.

12. Chollakup, R., R. Tantatherdtam, S. Ujjin, and K. Sriroth, "Pineapple leaf fiber reinforced thermoplastic composites: Effects of fiber length and ber content on their characteristics," Journal of Applied Polymer Science, Vol. 119, No. 4, 1952-1960, 2011.
doi:10.1002/app.32910

13. Hadi, A. E., J. P. Siregar, T. Cionita, M. B. Norlaila, M. A. M. Badari, A. P. Irawan, J. Jaafar, T. Rihayat, R. Junid, and D. F. Fitriyana, "Potentiality of utilizing woven pineapple leaf fibre for polymer composites," Polymers, Vol. 14, No. 13, 2744, 2022.
doi:10.3390/polym14132744

14. Sivakumar, K. and N. Mohan, "Performance analysis of downdraft gasifier for agriwaste biomass materials," Indian Journal of Science and Technology, Vol. 3, No. 1, 58-60, 2010.
doi:10.17485/ijst/2010/v3i1.14

15. Catala-Civera, J. M., A. J. Canos, P. Plaza-Gonzalez, J. D. Gutierrez, B. Garcia-Banos, and F. L. Penaranda-Foix, "Dynamic measurement of dielectric properties of materials at high temperature during microwave heating in a dual mode cylindrical cavity," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, No. 9, 2905-2914, 2015.
doi:10.1109/TMTT.2015.2453263

16. Niow, C. H., K. Mouthaan, J. C. Coetzee, and H. T. Hui, "Design of a small size dielectric loaded helical antenna for satellite communications," 2009 Asia Paci c Microwave Conference, 2009.

17. Alekseev, V. S., V. V. Zakharov, I. I. Artyukhov, and S. V. Trigorly, "Numerical simulation of the processes of microwave heating of dielectrics in traveling wave chambers," 2019 International Conference on Electrotechnical Complexes and Systems (ICOECS), 2019.

18. Menendez, J. A., A. Arenillas, B. Fidalgo, Y. Fernandez, L. Zubizarreta, E. G. Calvo, and J. M. Bermudez, "Microwave heating processes involving carbon materials," Fuel Processing Technology, Vol. 91, No. 1, 1-8, 2010.
doi:10.1016/j.fuproc.2009.08.021

19. Yacob, A. R., "Microwave induced carbon from waste palm kernel shell activated by phosphoric acid," International Journal of Engineering and Technology, Vol. 5, 214-217, 2013.
doi:10.7763/IJET.2013.V5.545

20. Zahid, L., M. F. B. A. Malek, H. Nornikman, N. A. Mohd Affendi, A. Ali, N. Hussin, et al. "Development of pyramidal microwave absorber using Sugar Cane Bagasse (SCB)," Progress In Electromagnetics Research, Vol. 137, 687-702, 2013.
doi:10.2528/PIER13012602

21. Gadzama, S. W., O. K. Sunmonu, U. S. Isiaku, and A. Danladi, "Isolation and characterization of nanocellulose from pineapple leaf fibres via chemo-mechanical method isolation and characterization of nanocellulose from pineapple leaf fibres via chemo-mechanical method," American Journal of Nano Research and Applications, Vol. 7, No. 6, 2020.

22. Zimprich, D., S. Perren, et al. "A two-level con rmatory factor analysis of a modified rosenberg self-esteem scale," Educational and Psychological Measurement, Vol. 65, No. 3, 465-481, 2005.
doi:10.1177/0013164404272487

23. Shrestha, N., "Factor analysis as a tool for survey analysis," American Journal of Applied Mathematics and Statistics, Vol. 9, 4-11, 2021.
doi:10.12691/ajams-9-1-2

24. Sallih, N., P. Lescher, and D. Bhattacharyya, "Factorial study of material and process parameters on the mechanical properties of extruded kenaf fibre/polypropylene composite sheets," Composites Part A: Applied Science and Manufacturing, Vol. 61, 91-107, 2014.
doi:10.1016/j.compositesa.2014.02.014

25. Isoda, N., R. Rodrigues, A. Silva, M. Goncalves, D. Mandelli, F. C. A. Figueiredo, and W. A. Carvalho, "Optimization of preparation conditions of activated carbon from agriculture waste utilizing factorial design," Powder Technology, Vol. 256, 175-181, 2014.
doi:10.1016/j.powtec.2014.02.029

26. Okeke, P. E., C. U. Atuanya, and J. C. Umembamalu, "Optimization of processing parameters and its effect on the mechanical properties of recycled low density polyethylene composite reinforced with Tetracarpidium conophorum shell particulates," Materials Research Express, Vol. 7, No. 2, 2020.
doi:10.1088/2053-1591/ab6d30

27. Gürkan, E. H., B. Ilyas, and Y. Tibet, "Adsorption of Cu(II) ve Zn(II) ions by alginate-based composites: Full factorial design approach," Carbon Nanostructures, Vol. 30, No. 8, 787-800, 2021.
doi:10.1080/1536383X.2021.2021891

28. Mah, K. H., H. W. Yussof, N. A. Jalanni, M. N. Abu Seman, and N. Zainol, "Separation of xylose from glucose using Thin Film Composite (TFC) nano ltration membrane: Effect of pressure, total sugar concentration and xylose/glucose ratio," Jurnal Teknologi, Vol. 70, No. 1, 2014.
doi:10.11113/jt.v70.2746

29. Aziz, N. H. and N. Zainol, "Isolation and identification of soil fungi isolates from forest soil for flooded soil recover," IOP Conference Series: Materials Science and Engineering, Vol. 342, No. 012028, 2018.

30. Jamaluddin, M. F., N. Zainol, R. Abdul-Rahman, N. F. Abdul-Ghaffar, and J. Salihon, "Comparison of anaerobic lignin degradation of banana stem waste using mixed culture from Malaysian soil and pure strains from soil culture," Asian Journal of Microbiology, Biotechnology and Environmental Sciences, Vol. 16, No. 3, 551-560, 2014.

31. Chun, C. W., N. F. Mohd Jamaludin, and N. Zainol, "Optimization of biogas production from poultry manure wastewater in 250 ml flasks," Jurnal Teknologi, Vol. 75, No. 1, 2015.
doi:10.11113/jt.v75.3981

32. Samad, K. A. and N. Zainol, "Effects of agitation and volume of inoculum on ferulic acid production by co-culture," Biocatalysis and Agricultural Biotechnology, Vol. 10, 9-12, 2017.
doi:10.1016/j.bcab.2017.01.010

33. Ismail, S. N. and N. Zainol, "Optimization of ferulic acid extraction from banana stem waste," Asian Journal of Microbiology, Biotechnology and Environmental Sciences, Vol. 16, 479-484, 2014.

34. Abdul Karim, M. S., Y. Konishi, and T. Kitazawa, "Robustness analysis of simultaneous determination method of complex permittivity and permeability," 2014 International Conference on Numerical Electromagnetic Modeling and Optimization for RF, Microwave, and Terahertz Applications (NEMO), 1-4, Pavia, Italy, 2014.

35. Hasan, N., N. S. M. Hussain, N. H. S. A. Razak, A. S. M. Shah, and M. S. A. Karim, "Fabrication and characterization of epoxy resin-barium titanate at Gband using waveguide technique," IOP Conference Series: Materials Science and Engineering, Vol. 1045, No. 1, 1-9, 2021.

36. Hussain, N. S. M., A. N. Azman, N. A. T. Yusof, N. A. A. Mohtadzar, and M. S. A. Karim, "Design of resonator cavity for liquid material characterization," TELKOMNIKA, Vol. 20, No. 2, 447-454, 2022.
doi:10.12928/telkomnika.v20i2.23158

37. Kinoshita, M., H. Kinouchi, M. S. Abdul Karim, K. Wakino, and T. Kitazawa, "A method of evaluating high-permittivity and lossy materials using a cylindrical cavity based on hybrid electromagnetic theory," Japanese Journal of Applied Physics, Vol. 51, No. 09LF03, 2012.

38. Awang Akbar, S., A. S. Mohd Shah, A. S. Abdullah, N. Abu Talip Yusof, S. Khatun, S. M. Shaharum, and M. S. Abdul Karim, "An accurate characterization of different water properties using resonant method for underwater communication activity," Proceedings of the 10th National Technical Seminar on Underwater System Technology, Vol. 538, 113-120, 2019.

39. Karim, M. S. A., N. Abu Talip Yusof, and T. Kitazawa, "Scattering analysis of rectangular cavity with input and output waveguides and its application to material characterization," 2017 IEEE Asia Pacific Microwave Conference (APMC), 2017.

40. Olmez, T., "The optimization of Cr(VI) reduction and removal by electrocoagulation using response surface methodology," Journal of Hazardous Materials, Vol. 162, No. 2-3, 1371-1378, 2009.
doi:10.1016/j.jhazmat.2008.06.017

41. Fendi, A. Maddu, "Dielectric properties of carbon from cassava starch synthesized from hydrothermal process," Journal of Physics: Conference Series, No. 1028, 012018, 2018.
doi:10.1088/1742-6596/1028/1/012018

42. Patra, A. and D. K. Bisoyi, "Dielectric and impedance spectroscopy studies on sisal fibre-reinforced polyester composite," Journal of Materials Science, Vol. 45, No. 21, 5742-5748, 2010.
doi:10.1007/s10853-010-4644-8

43. Hossain, S. S. and P. K. Roy, "Study of physical and dielectric properties of bio-waste-derived synthetic wollastonite," Journal of Asian Ceramic Societies, Vol. 6, No. 3, 289-298, 2018.
doi:10.1080/21870764.2018.1508549

44. Chang, B. P., A. K. Mohanty, and M. Misra, "Studies on durability of sustainable biobased composites: A review," RSC Advances, Vol. 10, No. 31, 17955-17999, 2020.
doi:10.1039/C9RA09554C

45. Uthaman, A., G. Xian, S. Thomas, Y. Wang, Q. Zheng, and X. Liu, "Durability of an epoxy resin and its carbon fiber-reinforced polymer composite upon immersion in water, acidic, and alkaline solutions," Polymers, Vol. 12, No. 3, 614, 2020.
doi:10.3390/polym12030614