Vol. 131
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-03-15
A Compact 3D Printed Mirror Folded Lens Antenna for 5G Applications
By
Progress In Electromagnetics Research C, Vol. 131, 35-48, 2023
Abstract
A concept to minimize the volume of the classic bifocal elliptical lens antenna is proposed. By applying the image theory, a reflective ground plane is placed along the short axis of a bifocal elliptical lens. An antenna-on-chip (AoC), as the lens's feed source, is placed at the upper focus and packaged by the lens body. The AoC radiates toward the ground plane instead of the free space. The geometric optics (GO) ray tracing analysis shows that the optical path of the miniaturized monofocal integrated lens antenna (ILA) is equal to that of the classic bifocal ILAs, so the gain is almost unaffected on the basis of the lens' volume reduction. For the quantitative evaluation of the gain loss caused by feed occlusion, a set of analytical equations is given. To verify the design concept, a 26 GHz miniaturized self-packaged monofocal elliptical ILA is designed and fabricated by 3D printing technology. The ILA achieves a 26.5 dBi gain and a size reduction rate of 38% compared with the classic bifocal elliptical lens. Moreover, the ILA also functions as the package for the AoC's die. The proposed design concept can not only reduce the volume of the classic bifocal elliptical lens dramatically but can also save the effort and cost to package the AoC's die in a highly integrated system, which is believed to have great potential to create large profit margins for the fifth-generation (5G) mobile network applications.
Citation
Bin Xu, and Bing Zhang, "A Compact 3D Printed Mirror Folded Lens Antenna for 5G Applications," Progress In Electromagnetics Research C, Vol. 131, 35-48, 2023.
doi:10.2528/PIERC23020702
References

1. Ye, Q., Y. Zhang, and S. Zhang, "High-isolation dual-polarized leaky-wave antenna with fixed beam for full-duplex millimeter-wave applications," IEEE Trans. Antennas Propag., Vol. 69, No. 11, 7202-7212, Nov. 2021.
doi:10.1109/TAP.2021.3109592

2. Zhang, B., H. Zirath, and Y. P. Zhang, "Investigation on 3-D-printing technologies for millimeter-wave and Terahertz applications," Proc. IEEE, Vol. 105, No. 4, 723-736, Apr. 2017.
doi:10.1109/JPROC.2016.2639520

3. Zhang, B., H. Sun, and K. Huang, "A metallic 3-D printed airborne high-power handling magneto-electric dipole array with cooling channels," IEEE Trans. Antennas Propag., Vol. 67, No. 12, 7368-7378, Dec. 2019.
doi:10.1109/TAP.2019.2935085

4. Nuaimi, M., W. Hong, and Y. Zhang, "Design of high-directivity compact-size conical horn lens antenna," IEEE Antennas Wireless Propag. Lett., Vol. 13, 467-470, 2014.
doi:10.1109/LAWP.2013.2297519

5. Li, Y. and K. Luk, "Low-cost high-gain and broadband substrate-integrated waveguide fed patch antenna array for 60-GHz band," IEEE Trans. Antennas Propag., Vol. 62, No. 11, 5531-5538, Nov. 2014.
doi:10.1109/TAP.2014.2350509

6. Zhu, J., Y. Yang, and Q. Xue, "Low-profile wideband and high-gain LTCC patch antenna array for 60 GHz applications," IEEE Trans. Antennas Propag., Vol. 68, No. 4, 3237-3242, Apr. 2020.
doi:10.1109/TAP.2019.2949913

7. Zhu, J., C. Chu, and Q. Xue, "60-GHz high gain planar aperture antenna using Low-Temperature Cofired Ceramics (LTCC) technology," IEEE MTT-S International Wireless Symposium (IWS), 1-3, 2019.

8. Wong, H., K. Luk, and H. Lai, "Small antennas in wireless communications," Proc. IEEE, Vol. 100, No. 7, 2109-2121, Jul. 2012.
doi:10.1109/JPROC.2012.2188089

9. Miura, Y., J. Hirokawa, and G. Yoshida, "Double-layer full-corporate-feed hollow-waveguide slot array antenna in the 60-GHz band," IEEE Trans. Antennas Propag., Vol. 59, No. 8, 2844-2851, Aug. 2011.
doi:10.1109/TAP.2011.2158784

10. Arfan, M. A. and H. Alqahtani, "Scattering of Laguerre-Gaussian beam from a chiral-coated perfect electromagnetic conductor (PEMC) cylinder," Journal of Computational Electronics, Vol. 21, No. 1, 253-262, 2022.
doi:10.1007/s10825-021-01834-0

11. Arfan, M. and S. Rehman, "Laguerre-Gaussian beam scattering by a perfect electromagnetic conductor (PEMC) sphere," Arabian Journal for Science and Engineering, 2022.

12. Nguyen, N., N. Delhote, and R. Sauleau, "Design and characterization of 60-GHz integrated lens antennas fabricated through ceramic stereolithography," IEEE Trans. Antennas Propag., Vol. 58, No. 8, 2757-2762, Aug. 2010.
doi:10.1109/TAP.2010.2050447

13. Costa, J., C. Fernandes, and H. Legay, "Compact Ka-band lens antennas for LEO satellites," IEEE Trans. Antennas Propag., Vol. 56, No. 5, 1251-1258, May 2008.
doi:10.1109/TAP.2008.922690

14. Bisognin, A., N. Nachabe, and C. Luxey, "Ball grid array module with integrated shaped lens for 5G backhaul/fronthaul communications in F-band," IEEE Trans. Antennas Propag., Vol. 65, No. 12, 6380-6394, Dec. 2017.
doi:10.1109/TAP.2017.2755439

15. Bisognin, A., D. Titz, and C. Luxey, "3D printed plastic 60 GHz lens: Enabling innovative millimeter wave antenna solution and system," IEEE MTT-S International Microwave Symposium (IMS), 1-4, 2014.

16. Wu, X., G. Elefteriades, and T. Perkins, "Design and characterization of single- and multiple-beam mm-wave circularly polarized substrate lens antennas for wireless communications," IEEE Trans. Microwave Theory Tech., Vol. 49, No. 3, 431-441, Mar. 2001.
doi:10.1109/22.910546

17. Godi, G., R. Sauleau, and D. Thouroude, "Performance of reduced size substrate lens antennas for millimeter-wave communications," IEEE Trans. Antennas Propag., Vol. 53, No. 4, 1278-1286, Apr. 2005.
doi:10.1109/TAP.2005.844420

18. Nguyen, N., R. Sauleau, and L. Coq, "Reduced-size double-shell lens antenna with flat-top radiation pattern for indoor communications at millimeter waves," IEEE Trans. Antennas Propag., Vol. 59, No. 6, 2424-2429, Jun. 2011.
doi:10.1109/TAP.2011.2144554

19. Nguyen, N., R. Sauleau, and C. Perez, "Very broadband extended hemispherical lenses: Role of matching layers for bandwidth enlargement," IEEE Trans. Antennas Propag., Vol. 57, No. 7, 1907-1913, Jul. 2009.
doi:10.1109/TAP.2009.2021884

20. Nguyen, N., R. Sauleau, and L. Coq, "Focal array fed dielectric lenses: An attractive solution for beam reconfiguration at millimeter waves," IEEE Trans. Antennas Propag., Vol. 59, No. 6, 2152-2159, Jun. 2011.
doi:10.1109/TAP.2011.2144550

21. Filipovic, D., S. Gearhart, and G. Rebeiz, "Double-slot antennas on extended hemispherical and elliptical silicon dielectric lenses," IEEE Trans. Microwave Theory Tech., Vol. 41, No. 10, 1738-1749, Oct. 1993.
doi:10.1109/22.247919

22. Fernandes, C., E. Lima, and J. Costa, "Broadband integrated lens for illuminating reflector antenna with constant aperture efficiency," IEEE Trans. Antennas Propag., Vol. 58, No. 12, 3805-3813, Dec. 2010.
doi:10.1109/TAP.2010.2078463

23. Fan, C., W. Yang, and Q. Xue, "A wideband and low-profile discrete dielectric lens using 3-D printing technology," IEEE Trans. Antennas Propag., Vol. 66, No. 10, 5160-5169, Oct. 2018.
doi:10.1109/TAP.2018.2862358

24. Bares, B. and R. Sauleau, "Electrically-small shaped integrated lens antennas: A study of feasibility in Q-band," IEEE Trans. Antennas Propag., Vol. 55, No. 4, 1038-1044, Apr. 2007.
doi:10.1109/TAP.2007.893377

25. Rolland, A., M. Ettorre, and R. Sauleau, "Axisymmetric resonant lens antenna with improved directivity in Ka-band," IEEE Antennas Wireless Propag. Lett., Vol. 10, 37-40, 2011.
doi:10.1109/LAWP.2011.2109931

26. Nguyen, N., R. Sauleau, and M. Ettorre, "Finite-difference time-domain simulations of the effects of air gaps in double-shell extended hemispherical lenses," IET Microwaves, Antennas Propag., Vol. 4, No. 1, 35-42, Jan. 2010.
doi:10.1049/iet-map.2008.0255

27. Nguyen, N., A. Rolland, and R. Sauleau, "Size and weight reduction of integrated lens antennas using a cylindrical air cavity," IEEE Trans. Antennas Propag., Vol. 60, No. 12, 5993-5998, Dec. 2012.
doi:10.1109/TAP.2012.2208931

28. Wang, K. and H. Wong, "Design of a wideband circularly polarized millimeter-wave antenna with an extended hemispherical lens," IEEE Trans. Antennas Propag., Vol. 66, No. 8, 4303-4308, Aug. 2018.
doi:10.1109/TAP.2018.2841414

29. PourMousavi, M., M. Wojnowski, and R. Weigel, "The impact of shape and size of air cavity on extended hemispherical lens characterization for wireless applications at 61 GHz," Proc. Seventh Eur. Conf. Antennas and Propag. (EuCAP), 3295-3298, 2013.

30. Pavacic, A., D. Rio, and G. Eleftheriades, "Three-dimensional ray-tracing to model internal reflections in off-axis lens antennas," IEEE Trans. Antennas Propag., Vol. 54, No. 2, 604-612, Feb. 2006.
doi:10.1109/TAP.2005.863143

31. Wang, J., Z.Wang, and H. Zhang, "Fast calculation of shading effect of reflector antenna," Electron. Warfare, Vol. 123, No. 6, 42-45, Jun. 2008.