1. Ye, Q., Y. Zhang, and S. Zhang, "High-isolation dual-polarized leaky-wave antenna with fixed beam for full-duplex millimeter-wave applications," IEEE Trans. Antennas Propag., Vol. 69, No. 11, 7202-7212, Nov. 2021.
doi:10.1109/TAP.2021.3109592
2. Zhang, B., H. Zirath, and Y. P. Zhang, "Investigation on 3-D-printing technologies for millimeter-wave and Terahertz applications," Proc. IEEE, Vol. 105, No. 4, 723-736, Apr. 2017.
doi:10.1109/JPROC.2016.2639520
3. Zhang, B., H. Sun, and K. Huang, "A metallic 3-D printed airborne high-power handling magneto-electric dipole array with cooling channels," IEEE Trans. Antennas Propag., Vol. 67, No. 12, 7368-7378, Dec. 2019.
doi:10.1109/TAP.2019.2935085
4. Nuaimi, M., W. Hong, and Y. Zhang, "Design of high-directivity compact-size conical horn lens antenna," IEEE Antennas Wireless Propag. Lett., Vol. 13, 467-470, 2014.
doi:10.1109/LAWP.2013.2297519
5. Li, Y. and K. Luk, "Low-cost high-gain and broadband substrate-integrated waveguide fed patch antenna array for 60-GHz band," IEEE Trans. Antennas Propag., Vol. 62, No. 11, 5531-5538, Nov. 2014.
doi:10.1109/TAP.2014.2350509
6. Zhu, J., Y. Yang, and Q. Xue, "Low-profile wideband and high-gain LTCC patch antenna array for 60 GHz applications," IEEE Trans. Antennas Propag., Vol. 68, No. 4, 3237-3242, Apr. 2020.
doi:10.1109/TAP.2019.2949913
7. Zhu, J., C. Chu, and Q. Xue, "60-GHz high gain planar aperture antenna using Low-Temperature Cofired Ceramics (LTCC) technology," IEEE MTT-S International Wireless Symposium (IWS), 1-3, 2019.
8. Wong, H., K. Luk, and H. Lai, "Small antennas in wireless communications," Proc. IEEE, Vol. 100, No. 7, 2109-2121, Jul. 2012.
doi:10.1109/JPROC.2012.2188089
9. Miura, Y., J. Hirokawa, and G. Yoshida, "Double-layer full-corporate-feed hollow-waveguide slot array antenna in the 60-GHz band," IEEE Trans. Antennas Propag., Vol. 59, No. 8, 2844-2851, Aug. 2011.
doi:10.1109/TAP.2011.2158784
10. Arfan, M. A. and H. Alqahtani, "Scattering of Laguerre-Gaussian beam from a chiral-coated perfect electromagnetic conductor (PEMC) cylinder," Journal of Computational Electronics, Vol. 21, No. 1, 253-262, 2022.
doi:10.1007/s10825-021-01834-0
11. Arfan, M. and S. Rehman, "Laguerre-Gaussian beam scattering by a perfect electromagnetic conductor (PEMC) sphere," Arabian Journal for Science and Engineering, 2022.
12. Nguyen, N., N. Delhote, and R. Sauleau, "Design and characterization of 60-GHz integrated lens antennas fabricated through ceramic stereolithography," IEEE Trans. Antennas Propag., Vol. 58, No. 8, 2757-2762, Aug. 2010.
doi:10.1109/TAP.2010.2050447
13. Costa, J., C. Fernandes, and H. Legay, "Compact Ka-band lens antennas for LEO satellites," IEEE Trans. Antennas Propag., Vol. 56, No. 5, 1251-1258, May 2008.
doi:10.1109/TAP.2008.922690
14. Bisognin, A., N. Nachabe, and C. Luxey, "Ball grid array module with integrated shaped lens for 5G backhaul/fronthaul communications in F-band," IEEE Trans. Antennas Propag., Vol. 65, No. 12, 6380-6394, Dec. 2017.
doi:10.1109/TAP.2017.2755439
15. Bisognin, A., D. Titz, and C. Luxey, "3D printed plastic 60 GHz lens: Enabling innovative millimeter wave antenna solution and system," IEEE MTT-S International Microwave Symposium (IMS), 1-4, 2014.
16. Wu, X., G. Elefteriades, and T. Perkins, "Design and characterization of single- and multiple-beam mm-wave circularly polarized substrate lens antennas for wireless communications," IEEE Trans. Microwave Theory Tech., Vol. 49, No. 3, 431-441, Mar. 2001.
doi:10.1109/22.910546
17. Godi, G., R. Sauleau, and D. Thouroude, "Performance of reduced size substrate lens antennas for millimeter-wave communications," IEEE Trans. Antennas Propag., Vol. 53, No. 4, 1278-1286, Apr. 2005.
doi:10.1109/TAP.2005.844420
18. Nguyen, N., R. Sauleau, and L. Coq, "Reduced-size double-shell lens antenna with flat-top radiation pattern for indoor communications at millimeter waves," IEEE Trans. Antennas Propag., Vol. 59, No. 6, 2424-2429, Jun. 2011.
doi:10.1109/TAP.2011.2144554
19. Nguyen, N., R. Sauleau, and C. Perez, "Very broadband extended hemispherical lenses: Role of matching layers for bandwidth enlargement," IEEE Trans. Antennas Propag., Vol. 57, No. 7, 1907-1913, Jul. 2009.
doi:10.1109/TAP.2009.2021884
20. Nguyen, N., R. Sauleau, and L. Coq, "Focal array fed dielectric lenses: An attractive solution for beam reconfiguration at millimeter waves," IEEE Trans. Antennas Propag., Vol. 59, No. 6, 2152-2159, Jun. 2011.
doi:10.1109/TAP.2011.2144550
21. Filipovic, D., S. Gearhart, and G. Rebeiz, "Double-slot antennas on extended hemispherical and elliptical silicon dielectric lenses," IEEE Trans. Microwave Theory Tech., Vol. 41, No. 10, 1738-1749, Oct. 1993.
doi:10.1109/22.247919
22. Fernandes, C., E. Lima, and J. Costa, "Broadband integrated lens for illuminating reflector antenna with constant aperture efficiency," IEEE Trans. Antennas Propag., Vol. 58, No. 12, 3805-3813, Dec. 2010.
doi:10.1109/TAP.2010.2078463
23. Fan, C., W. Yang, and Q. Xue, "A wideband and low-profile discrete dielectric lens using 3-D printing technology," IEEE Trans. Antennas Propag., Vol. 66, No. 10, 5160-5169, Oct. 2018.
doi:10.1109/TAP.2018.2862358
24. Bares, B. and R. Sauleau, "Electrically-small shaped integrated lens antennas: A study of feasibility in Q-band," IEEE Trans. Antennas Propag., Vol. 55, No. 4, 1038-1044, Apr. 2007.
doi:10.1109/TAP.2007.893377
25. Rolland, A., M. Ettorre, and R. Sauleau, "Axisymmetric resonant lens antenna with improved directivity in Ka-band," IEEE Antennas Wireless Propag. Lett., Vol. 10, 37-40, 2011.
doi:10.1109/LAWP.2011.2109931
26. Nguyen, N., R. Sauleau, and M. Ettorre, "Finite-difference time-domain simulations of the effects of air gaps in double-shell extended hemispherical lenses," IET Microwaves, Antennas Propag., Vol. 4, No. 1, 35-42, Jan. 2010.
doi:10.1049/iet-map.2008.0255
27. Nguyen, N., A. Rolland, and R. Sauleau, "Size and weight reduction of integrated lens antennas using a cylindrical air cavity," IEEE Trans. Antennas Propag., Vol. 60, No. 12, 5993-5998, Dec. 2012.
doi:10.1109/TAP.2012.2208931
28. Wang, K. and H. Wong, "Design of a wideband circularly polarized millimeter-wave antenna with an extended hemispherical lens," IEEE Trans. Antennas Propag., Vol. 66, No. 8, 4303-4308, Aug. 2018.
doi:10.1109/TAP.2018.2841414
29. PourMousavi, M., M. Wojnowski, and R. Weigel, "The impact of shape and size of air cavity on extended hemispherical lens characterization for wireless applications at 61 GHz," Proc. Seventh Eur. Conf. Antennas and Propag. (EuCAP), 3295-3298, 2013.
30. Pavacic, A., D. Rio, and G. Eleftheriades, "Three-dimensional ray-tracing to model internal reflections in off-axis lens antennas," IEEE Trans. Antennas Propag., Vol. 54, No. 2, 604-612, Feb. 2006.
doi:10.1109/TAP.2005.863143
31. Wang, J., Z.Wang, and H. Zhang, "Fast calculation of shading effect of reflector antenna," Electron. Warfare, Vol. 123, No. 6, 42-45, Jun. 2008.