Vol. 131
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-03-27
Dual Cost Function Model Predictive Control for PMSM
By
Progress In Electromagnetics Research C, Vol. 131, 171-184, 2023
Abstract
In model predictive current control (MPCC), in order to reduce the switching frequency, the number of switching changes is introduced into the cost function. But it will lead to the complexity of weight coefficient adjustment. To solve the problem, a dual cost function model predictive control (DCF-MPC) strategy for permanent magnet synchronous motor (PMSM) is proposed. First, the dual cost function is established, and the cost function g1 first screens out the combination of two or three voltage vectors which minimizes the current steady-state error. Then, the cost function g2 selects the voltage vector combination that minimizes the number of switching changes from the selected voltage vector combinations in g1 as the optimal voltage vector combination. Finally, the experiment shows that compared with the traditional single cost function, the proposed method eliminates the weight coefficient of MPCC, simplifies the system structure and reduces the amount of calculation. Moreover, it suppresses the stator current ripple, reduces the harmonic content of three-phase current, and has better steady-state and dynamic performance under different working conditions.
Citation
Dingdou Wen, Wenting Zhang, Zhe Li, Zhongjian Tang, Yang Zhang, and Yun Ling, "Dual Cost Function Model Predictive Control for PMSM," Progress In Electromagnetics Research C, Vol. 131, 171-184, 2023.
doi:10.2528/PIERC23011502
References

1. Yu, H., J. Wang, and Z. Xin, "Model predictive control for PMSM based on discrete space vector modulation with RLS parameter identification," Energies, Vol. 15, No. 11, 1-16, 2022.

2. Rodriguez, J., J. Pontt, C. A. Silva, et al. "Predictive current control of a voltage source inverter," IEEE Transactions on Industrial Electronics, Vol. 54, No. 1, 495-503, 2007.
doi:10.1109/TIE.2006.888802

3. Lyu, Z., X. Wu, J. Gao, et al. "An improved finite-control-set model predictive current control for IPMSM under model parameter mismatches," Energies, Vol. 14, No. 19, 1-13, 2021.
doi:10.3390/en14196342

4. Uddin, M. and M. Rahman, "Online torque-flux estimation-based nonlinear torque and flux control scheme of IPMSM drive for reduced torque ripples," IEEE Transactions on Power Electronics, Vol. 34, No. 1, 636-645, 2019.
doi:10.1109/TPEL.2018.2827332

5. Pak, S. and I. Kang, "Sensorless vector control of permanent magnetic synchronous motor with parameter error compensation," International Transactions on Electrical Energy Systems, Vol. 31, No. 5, e12787, 2021.
doi:10.1002/2050-7038.12787

6. Xia, C., J. Zhao, Y. Yan, et al. "A novel direct torque control of matrix converter fed PMSM drives using duty cycle control for torque ripple reduction," IEEE Transactions on Industrial Electronics, Vol. 61, No. 6, 2700-2713, 2013.
doi:10.1109/TIE.2013.2276039

7. Yao, X., C. Huang, J. Wang, et al. "Predictive current control of dual vector model of permanent magnet synchronous motor with parameter identification function," Proceedings of the CSEE, 1-13, 2022.

8. Zhang, Y., J. Zhu, and W. Xu, "Predictive torque control of permanent magnet synchronous motor drive with reduced switching frequency," 2010 International Conference on Electrical Machines and Systems, 798-803, 2010.

9. Yao, J., R. Liu, and X. Yin, "Research on predictive control of three-vector low switching frequency model of permanent magnet synchronous motor," Transactions of China Electrotechnical Society, Vol. 33, No. 13, 2935-2945, 2018.

10. Habibullah, M., D. Lu, D. Xiao, et al. "Predictive torque control of induction motor sensorless drive fed by a 3L-NPC inverter," IEEE Transactions on Industrial Informatics, Vol. 13, No. 1, 60-70, 2016.
doi:10.1109/TII.2016.2603922

11. Zhang, Z., Y. Liu, J. Chen, et al. "Predictive control strategy of permanent magnet synchronous motor amplitude control set model," Transactions of China Electrotechnical Society, Vol. 37, No. 23, 6126-6134, 2022.

12. Tu, W., G. Luo, and W. Liu, "Prediction of current control by finite control set model of permanent magnet synchronous motor based on fuzzy dynamic cost function," Transactions of China Electrotechnical Society, Vol. 32, No. 16, 89-97, 2017.

13. Li, J., F. Wang, D. Ke, et al. "Design of predictive control weight coefficient of permanent magnet synchronous motor model based on particle swarm algorithm," Transactions of China Electrotechnical Society, Vol. 36, No. 1, 50-59+76, 2021.

14. Novak, M., H. Xie, T. Dragicevic, et al. "Optimal cost function parameter design in predictive torque control (PTC) using artificial neural networks (ANN)," IEEE Transactions on Industrial Electronics, Vol. 68, No. 8, 7309-7319, 2021.
doi:10.1109/TIE.2020.3009607

15. Abbaszadeh, A., D. Khaburi, H. Mahmoudi, et al. "Simplified model predictive control with variable weighting factor for current ripple reduction," IET Power Electronics, Vol. 10, No. 10, 1165-1174, 2017.
doi:10.1049/iet-pel.2016.0483

16. Liu, X., D. Wang, and Z. Peng, "Cascade-free fuzzy finite-control-set model predictive control for nested neutral point-clamped converters with low switching frequency," IEEE Transactions on Control Systems Technology, Vol. 27, No. 5, 2237-2244, 2019.
doi:10.1109/TCST.2018.2839091

17. Guazzelli, P., W. de Andrade Pereira, C. de Oliveira, et al. "Weighting factors optimization of predictive torque control of induction motor by multi-objective genetic algorithm," IEEE Transactions on Power Electronics, Vol. 34, No. 7, 6628-6638, 2018.
doi:10.1109/TPEL.2018.2834304

18. Caseiro, L., A. Mendes, and S. Cruz, "Dynamically weighted optimal switching vector model predictive control of power converters," IEEE Transactions on Industrial Electronics, Vol. 66, No. 2, 1235-1245, 2019.
doi:10.1109/TIE.2018.2829689

19. Wang, F., J. Li, Z, Li, et al. "Design of model predictive control weighting factors for PMSM using gaussian distribution-based particle swarm optimization," IEEE Transactions on Industrial Electronics, Vol. 69, No. 11, 10935-10946, 2022.
doi:10.1109/TIE.2021.3120441

20. Rojas, C., J. Rodriguez, F. Villarroel, et al. "Predictive torque and flux control without weighting factors," IEEE Transactions on Industrial Electronics, Vol. 60, No. 2, 681-690, 2012.
doi:10.1109/TIE.2012.2206344

21. Xu, Y., Y. He, and S. Li, "Logical operation-based model predictive control for quasi-Z-source inverter without weighting factor," IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 9, No. 1, 1039-1051, 2021.
doi:10.1109/JESTPE.2020.2973183

22. Zhang, Y. and H. Yang, "Two-vector-based model predictive torque control without weighting factors for induction motor drives," IEEE Transactions on Power Electronics, Vol. 31, No. 2, 1381-1390, 2016.
doi:10.1109/TPEL.2015.2416207

23. Zhang, Y., H. Yang, and B. Xia, "Model-predictive control of induction motor drives: Torque control versus flux control," IEEE Transactions on Industry Applications, Vol. 52, No. 5, 4050-4060, 2016.
doi:10.1109/TIA.2016.2582796

24. Wang, F., H. Xie, Q. Chen, et al. "Parallel predictive torque control for induction machines without weighting factors," IEEE Transactions on Power Electronics, Vol. 35, No. 2, 1779-1788, 2020.
doi:10.1109/TPEL.2019.2922312

25. Liu, J., Z. Ge, X. Wu, et al. "Predictive current control of permanent magnet synchronous motor based on duty cycle modulation," Proceedings of the CSEE, Vol. 40, No. 10, 3319-3328, 2020.