Vol. 129
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-01-29
Systematic Flexible Antenna Performance Study of V-Folding Percentage Influence
By
Progress In Electromagnetics Research C, Vol. 129, 99-113, 2023
Abstract
In wireless technology, microstrip patch antennas are often used in communication systems with various designs. However, the effect of geometrically folded antennas on wireless communication performance is unclear. To address this problem, an in-depth study of the flexible antenna parameters was performed through V-folding analysis. A systematic and complete analysis of the percentage of folding in patch antennas was performed. The folding of patch antennas is expected to become mandatory because patch antennas are integrated and molded according to specified object shapes. The designed antenna was operated at 0.1-5.0 GHz to investigate the folding performance in the frequency range of 1.00-3.78 GHz used in many wireless applications, such as the GPS, GSM, and LTE standards. A promising operating frequency for flat (unfold) antennas is 1.42 GHz with an achieved multiband bandwidth of 31.6 MHz, which shifted according to the folding angle but with good performance. The results of this study can be used to predict the performance of an antenna when it is placed on a product of any shape, according to the designed object pattern.
Citation
Ayyala Kishore Ajay Kumar, Atul Thakur, Sahbi Baccar, Nour Mohammad Murad, Mani S. Prasad, Preeti Thakur, Glauco Fontgalland, Yong Zhou, and Blaise Ravelo, "Systematic Flexible Antenna Performance Study of V-Folding Percentage Influence," Progress In Electromagnetics Research C, Vol. 129, 99-113, 2023.
doi:10.2528/PIERC22111502
References

1. Bhuva, D., K. Sathashivan, A. Patil, et al. "Smart car systems: A need in smart city," International Conference on Smart City and Emerging Technology (ICSCET), Vol. 1-3, 2018, DOI: 10.1109/ICSCET.2018.8537299.

2. Miranda, J., M. Memon, J. Cabral, et al. "Eye on patient care: Continuous health monitoring: Design and implementation of a wireless platform for healthcare applications," IEEE Microw. Mag., Vol. 18, No. 2, 83-94, 2017.
doi:10.1109/MMM.2016.2635898

3. Xu, Q., B. Wang, F. Zhang, et al. "Wireless AI in smart car: How smart a car can be?," IEEE Access, Vol. 8, 55091-55112, 2020.
doi:10.1109/ACCESS.2020.2978531

4. Xu, G., Q. Zhang, B. Li, et al. "Smart car care systems and its technology prospects with service robots function," IEEE International Conference on Information and Automation (ICIA), 1289-1294, 2014, DOI: 10.1109/ICInfA.2014.6932847.
doi:10.1109/ICInfA.2014.6932847

5. Zhao, X. and J. Jin, "High gain directional antenna array for WiMAX application," Trans. Tianjin Univ., Vol. 20, No. 5, 364-367, 2014.
doi:10.1007/s12209-014-2255-1

6. Varma, R. and J. Ghosh, "Multi-band proximity coupled microstrip antenna for wireless applications," Microw. Opt. Technol. Lett., Vol. 60, No. 2, 424-428, 2018.
doi:10.1002/mop.30985

7. Chen, H.-D., C.-Y.-D. Sim, J.-Y. Wu, et al. "Broadband high-gain microstrip array antennas for WiMAX base station," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 8, 3977-3980, 2012.
doi:10.1109/TAP.2012.2201116

8. Kumar, P. P. and R. Nakkeeran, "A new corrugated tooth like slot microstrip antenna for WiMAX/satellite applications," Electrical Electronics and Computer Science (SCEECS), 2014 IEEE Students' Conference, 1-5, 2014.

9. Pandey, R. and D. K. Kumar Vishwakarma, "A fractalized meander-line EBG-based microstrip teeth-like patch slot antenna for use in satellite and defense applications," Microw. Opt. Technol. Lett., Vol. 58, No. 8, 2010-2015, 2016.
doi:10.1002/mop.29968

10. Singh, A., M. Aneesh, and J. A. Ansari, "Analysis of microstrip line fed patch antenna for wireless communications," Open Eng., Vol. 7, No. 1, 279-286, 2017.
doi:10.1515/eng-2017-0034

11. Alharbi, S., R. M. Shubair, and A. Kiourti, "Flexible antennas for wearable applications: Recent advances and design challenges," 12th Eur. Conference on Antennas and Propagation (EuCAP), 1-3, 2018.

12. Song, L. and Y. Rahmat-Samii, "Patch antenna folding effects for wearable applications: Guidelines and design curves," 2018 United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM), 1-2, 2018.

13. Song, L. and Y. Rahmat-Samii, "A systematic investigation of rectangular patch antenna bending effects for wearable applications," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 5, 2219-2228, 2018, DOI: 10.1109/TAP.2018.2809469.
doi:10.1109/TAP.2018.2809469

14. Froehle, P., T. Przybylski, C. McDonald, et al. "Flexible antenna for wireless body area network," IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Sci. Meeting, 1214-1215, 2015.
doi:10.1109/APS.2015.7304996

15. Ahmed, S., F. A. Tahir, A. Shamim, et al. "A compact kapton-based inkjet-printed multiband antenna for flexible wireless devices," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1802-1805, 2015, DOI: 10.1109/LAWP.2015.2424681.
doi:10.1109/LAWP.2015.2424681

16. Rabobason, Y. G., G. P. Rigas, S. Swaisaenyakorn, et al. "Design and synthesis of flexible switching 1×2 antenna array on Kapton substrate," Eur. Phys. J. Appl. Phys., Vol. 74, No. 3, 1-10, 2016.
doi:10.1051/epjap/2016160082

17. Rabobason, Y. G., G. P. Rigas, S. Swaisaenyakorn, et al. "Design of flexible passive antenna array on Kapton substrate," Progress In Electromagnetics Research C, Vol. 63, 105-117, 2016.
doi:10.2528/PIERC15120906

18. Phan, H. P., T.-P. Vuong, P. Benech, et al. "Study of bending effects of a wideband paper-based printed microstrip-fed antenna," Microw. Opt. Technol. Lett., Vol. 62, No. 4, 1785-1794, 2020, DOI: 10.1002/mop.32233.
doi:10.1002/mop.32233

19. Boeykens, F., L. Vallozzi, and H. Rogier, "Cylindrical bending of deformable textile rectangular patch antennas," Int. J. Antennas Propag., Vol. 2012, 1-11, 2012, DOI: 10.1155/2012/170420.
doi:10.1155/2012/170420

20. Mohandoss, S., S. K. Palaniswamy, R. R. Thipparaju, et al. "On the bending and time domain analysis of compact wideband flexible monopole antennas," AEU Int. J. Electron. Commun., Vol. 101, 168-181, 2019, DOI: 10.1016/j.aeue.2019.01.015.
doi:10.1016/j.aeue.2019.01.015

21. Kao, H.-L. and C.-H. Chuang, "Folding effects on a fabric-based antenna for wearable applications," 70th Electronic Components and Technology Conference (ECTC), IEEE Publications, Vol. 2020, DOI: 10.1109/ECTC32862.2020.00261, 1665-1670, 2020.

22. Shafaet-Uz-Zaman, K. and M. A. Matin, "Analysis of folding and human body effects on sleeve-badge textile antenna performance," TEQIP III Sponsored International Conference on Microwave Integrated Circuits, Photonics and Wireless Networks (IMICPW), Vol. 2019, 10-14, 2019, DOI: 10.1109/IMICPW.2019.8933267.

23. Ma, J., S. Li, and S. Zhang, "Folding effect on antenna with radiation performance for electronic tag," Proc. 2014 3rd Asia-Paci c Conference on Antennas and Propagation, Vol. 619-622, 2014, DOI: 10.1109/APCAP.2014.6992571.

24. Boyuan, M., J. Pan, E. Wang, et al. "Conformal bent dielectric resonator antennas with curving ground plane," IEEE Trans. Antennas Propag., Vol. 67, No. 3, 1931-1936, March 2018, DOI: 10.1109/TAP.2018.2889146.
doi:10.1109/TAP.2018.2889146

25. Simorangkir, R. B. V. B., Y. Yang, K. P. Esselle, et al. "A method to realize robust flexible electronically tunable antennas using polymer-embedded conductive fabric," IEEE Trans. Antennas Propag., Vol. 66, No. 1, 50-58, 2018, DOI: 10.1109/TAP.2017.2772036.
doi:10.1109/TAP.2017.2772036

26. Ibanez-Labiano, I., M. S. Ergoktas, C. Kocabas, et al. "Graphene-based soft wearable antennas," Appl. Mater. Today, Vol. 20, 2020, DOI: 10.1016/j.apmt.2020.100727.

27. Balanis, C., Antenna Theory: Analysis and Design, 3rd Ed., John Wiley & Sons, Inc., 2005.

28. Hammer, P., D. van Bouchaute, D. Verschraeven, et al. "A model for calculating the radiation field of microstrip antennas," IEEE Trans. Antennas Propag., Vol. 27, No. 2, 267-270, 1979, DOI: 10.1109/TAP.1979.1142054.
doi:10.1109/TAP.1979.1142054

29. Aas, J. A. and K. Jakobsen, "Radiation patterns of rectangular microstrip antennas on finite ground planes," 12th Eur. Microwave Conference, 384-389, 1982, DOI: 10.1109/EUMA.1982.333091.

30. Olaimat, M. M. and N. I. Dib, "Improved formulae for the resonant frequencies of triangular microstrip patch antennas," Int. J. Electron, Vol. 98, No. 3, 407-424, 2011, DOI: 10.1080/00207217.2010.547811.
doi:10.1080/00207217.2010.547811

31. Alex-Amor, A., Á. Palomares-Caballero, J. Moreno-Núñez, et al. "Ultrawideband inkjet-printed monopole antennas for energy harvesting application," Microw. Opt. Technol. Lett., Vol. 63, No. 6, 1719-1726, 2021, DOI: 10.1002/mop.32803.
doi:10.1002/mop.32803

32. Murad, N. M., L. Rajaoarisoa, S. Lalléchère, et al. "Analysis of microstrip coupled line based data signal and energy hybrid receiver," Journal of Electromagnetic Waves and Applications, Vol. 34, No. 18, 2433-2454, 2020.
doi:10.1080/09205071.2020.1819443