Institut Universitaire de Technologie
University of La Reunion
France
HomepageSchool of Electronic & Information Engineering
Nanjing University of Information Science & Technology (NUIST)
China
Homepage1. Bhuva, D., K. Sathashivan, A. Patil, et al. "Smart car systems: A need in smart city," International Conference on Smart City and Emerging Technology (ICSCET), Vol. 1-3, 2018, DOI: 10.1109/ICSCET.2018.8537299.
2. Miranda, J., M. Memon, J. Cabral, et al. "Eye on patient care: Continuous health monitoring: Design and implementation of a wireless platform for healthcare applications," IEEE Microw. Mag., Vol. 18, No. 2, 83-94, 2017.
doi:10.1109/MMM.2016.2635898
3. Xu, Q., B. Wang, F. Zhang, et al. "Wireless AI in smart car: How smart a car can be?," IEEE Access, Vol. 8, 55091-55112, 2020.
doi:10.1109/ACCESS.2020.2978531
4. Xu, G., Q. Zhang, B. Li, et al. "Smart car care systems and its technology prospects with service robots function," IEEE International Conference on Information and Automation (ICIA), 1289-1294, 2014, DOI: 10.1109/ICInfA.2014.6932847.
doi:10.1109/ICInfA.2014.6932847
5. Zhao, X. and J. Jin, "High gain directional antenna array for WiMAX application," Trans. Tianjin Univ., Vol. 20, No. 5, 364-367, 2014.
doi:10.1007/s12209-014-2255-1
6. Varma, R. and J. Ghosh, "Multi-band proximity coupled microstrip antenna for wireless applications," Microw. Opt. Technol. Lett., Vol. 60, No. 2, 424-428, 2018.
doi:10.1002/mop.30985
7. Chen, H.-D., C.-Y.-D. Sim, J.-Y. Wu, et al. "Broadband high-gain microstrip array antennas for WiMAX base station," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 8, 3977-3980, 2012.
doi:10.1109/TAP.2012.2201116
8. Kumar, P. P. and R. Nakkeeran, "A new corrugated tooth like slot microstrip antenna for WiMAX/satellite applications," Electrical Electronics and Computer Science (SCEECS), 2014 IEEE Students' Conference, 1-5, 2014.
9. Pandey, R. and D. K. Kumar Vishwakarma, "A fractalized meander-line EBG-based microstrip teeth-like patch slot antenna for use in satellite and defense applications," Microw. Opt. Technol. Lett., Vol. 58, No. 8, 2010-2015, 2016.
doi:10.1002/mop.29968
10. Singh, A., M. Aneesh, and J. A. Ansari, "Analysis of microstrip line fed patch antenna for wireless communications," Open Eng., Vol. 7, No. 1, 279-286, 2017.
doi:10.1515/eng-2017-0034
11. Alharbi, S., R. M. Shubair, and A. Kiourti, "Flexible antennas for wearable applications: Recent advances and design challenges," 12th Eur. Conference on Antennas and Propagation (EuCAP), 1-3, 2018.
12. Song, L. and Y. Rahmat-Samii, "Patch antenna folding effects for wearable applications: Guidelines and design curves," 2018 United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM), 1-2, 2018.
13. Song, L. and Y. Rahmat-Samii, "A systematic investigation of rectangular patch antenna bending effects for wearable applications," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 5, 2219-2228, 2018, DOI: 10.1109/TAP.2018.2809469.
doi:10.1109/TAP.2018.2809469
14. Froehle, P., T. Przybylski, C. McDonald, et al. "Flexible antenna for wireless body area network," IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Sci. Meeting, 1214-1215, 2015.
doi:10.1109/APS.2015.7304996
15. Ahmed, S., F. A. Tahir, A. Shamim, et al. "A compact kapton-based inkjet-printed multiband antenna for flexible wireless devices," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1802-1805, 2015, DOI: 10.1109/LAWP.2015.2424681.
doi:10.1109/LAWP.2015.2424681
16. Rabobason, Y. G., G. P. Rigas, S. Swaisaenyakorn, et al. "Design and synthesis of flexible switching 1×2 antenna array on Kapton substrate," Eur. Phys. J. Appl. Phys., Vol. 74, No. 3, 1-10, 2016.
doi:10.1051/epjap/2016160082
17. Rabobason, Y. G., G. P. Rigas, S. Swaisaenyakorn, et al. "Design of flexible passive antenna array on Kapton substrate," Progress In Electromagnetics Research C, Vol. 63, 105-117, 2016.
doi:10.2528/PIERC15120906
18. Phan, H. P., T.-P. Vuong, P. Benech, et al. "Study of bending effects of a wideband paper-based printed microstrip-fed antenna," Microw. Opt. Technol. Lett., Vol. 62, No. 4, 1785-1794, 2020, DOI: 10.1002/mop.32233.
doi:10.1002/mop.32233
19. Boeykens, F., L. Vallozzi, and H. Rogier, "Cylindrical bending of deformable textile rectangular patch antennas," Int. J. Antennas Propag., Vol. 2012, 1-11, 2012, DOI: 10.1155/2012/170420.
doi:10.1155/2012/170420
20. Mohandoss, S., S. K. Palaniswamy, R. R. Thipparaju, et al. "On the bending and time domain analysis of compact wideband flexible monopole antennas," AEU Int. J. Electron. Commun., Vol. 101, 168-181, 2019, DOI: 10.1016/j.aeue.2019.01.015.
doi:10.1016/j.aeue.2019.01.015
21. Kao, H.-L. and C.-H. Chuang, "Folding effects on a fabric-based antenna for wearable applications," 70th Electronic Components and Technology Conference (ECTC), IEEE Publications, Vol. 2020, DOI: 10.1109/ECTC32862.2020.00261, 1665-1670, 2020.
22. Shafaet-Uz-Zaman, K. and M. A. Matin, "Analysis of folding and human body effects on sleeve-badge textile antenna performance," TEQIP III Sponsored International Conference on Microwave Integrated Circuits, Photonics and Wireless Networks (IMICPW), Vol. 2019, 10-14, 2019, DOI: 10.1109/IMICPW.2019.8933267.
23. Ma, J., S. Li, and S. Zhang, "Folding effect on antenna with radiation performance for electronic tag," Proc. 2014 3rd Asia-Pacic Conference on Antennas and Propagation, Vol. 619-622, 2014, DOI: 10.1109/APCAP.2014.6992571.
24. Boyuan, M., J. Pan, E. Wang, et al. "Conformal bent dielectric resonator antennas with curving ground plane," IEEE Trans. Antennas Propag., Vol. 67, No. 3, 1931-1936, March 2018, DOI: 10.1109/TAP.2018.2889146.
doi:10.1109/TAP.2018.2889146
25. Simorangkir, R. B. V. B., Y. Yang, K. P. Esselle, et al. "A method to realize robust flexible electronically tunable antennas using polymer-embedded conductive fabric," IEEE Trans. Antennas Propag., Vol. 66, No. 1, 50-58, 2018, DOI: 10.1109/TAP.2017.2772036.
doi:10.1109/TAP.2017.2772036
26. Ibanez-Labiano, I., M. S. Ergoktas, C. Kocabas, et al. "Graphene-based soft wearable antennas," Appl. Mater. Today, Vol. 20, 2020, DOI: 10.1016/j.apmt.2020.100727.
27. Balanis, C., Antenna Theory: Analysis and Design, 3rd Ed., John Wiley & Sons, Inc., 2005.
28. Hammer, P., D. van Bouchaute, D. Verschraeven, et al. "A model for calculating the radiation field of microstrip antennas," IEEE Trans. Antennas Propag., Vol. 27, No. 2, 267-270, 1979, DOI: 10.1109/TAP.1979.1142054.
doi:10.1109/TAP.1979.1142054
29. Aas, J. A. and K. Jakobsen, "Radiation patterns of rectangular microstrip antennas on finite ground planes," 12th Eur. Microwave Conference, 384-389, 1982, DOI: 10.1109/EUMA.1982.333091.
30. Olaimat, M. M. and N. I. Dib, "Improved formulae for the resonant frequencies of triangular microstrip patch antennas," Int. J. Electron, Vol. 98, No. 3, 407-424, 2011, DOI: 10.1080/00207217.2010.547811.
doi:10.1080/00207217.2010.547811
31. Alex-Amor, A., Á. Palomares-Caballero, J. Moreno-Núñez, et al. "Ultrawideband inkjet-printed monopole antennas for energy harvesting application," Microw. Opt. Technol. Lett., Vol. 63, No. 6, 1719-1726, 2021, DOI: 10.1002/mop.32803.
doi:10.1002/mop.32803
32. Murad, N. M., L. Rajaoarisoa, S. Lalléchère, et al. "Analysis of microstrip coupled line based data signal and energy hybrid receiver," Journal of Electromagnetic Waves and Applications, Vol. 34, No. 18, 2433-2454, 2020.
doi:10.1080/09205071.2020.1819443