Vol. 104
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2022-05-24
A Circular Slotted Shaped UWB Monopole Antenna for Breast Cancer Detection
By
Progress In Electromagnetics Research Letters, Vol. 104, 57-65, 2022
Abstract
The design of an innovative breast model system that focuses on a wideband for the detection of malignant tumours is described. The planned antenna has an overall area of 18×28 mm2 and a fractional bandwidth (FBW) of 99% across a frequency spectrum of 3.4-10 GHz. The suggested antenna has excellent impedance matching, a considerable gain of 3.95 dBi, maximum efficiency of 96.98%. Omnidirectional radiated patterns are verified in the frequency, and time-domain analysis is also investigated for breast tumor diagnosis. For detecting a breast tumor with accuracy, the suggested antenna S21 parameters are evaluated together, including imaging outcomes of current densities and specific absorption rate (SAR). These findings show that the radiator and the whole system work well at finding the tumor.
Citation
Venkata Lakshmi Narayana Phani Ponnapalli, Shanumugam Karthikeyan, and Jammula Lakshmi Narayana, "A Circular Slotted Shaped UWB Monopole Antenna for Breast Cancer Detection," Progress In Electromagnetics Research Letters, Vol. 104, 57-65, 2022.
doi:10.2528/PIERL22040204
References

1. Raghavan, S. and M. Ramaraj, "An overview of microwave imaging towards for breast cancer diagnosis," Progress In Electromagnetics Research Symposium Proceedings, 627-630, Moscow, Russia, Aug. 19-23, 2012.

2. Jayant, S., G. Srivastava, and R. Purwar, "Bending and SAR analysis on UWB wearable MIMO antenna for on-arm WBAN applications," Frequenz, Vol. 75, No. 5-6, 177-189, 2021.
doi:10.1515/freq-2020-0105

3. Kanj, H. and M. Popovic, "A novel ultra-compact broadband antenna for microwave breast tumor detection," Progress In Electromagnetics Research, Vol. 86, 169-198, 2008.
doi:10.2528/PIER08090701

4. Kaabal, A., M. El halaoui, S. Ahyoud, and A. Asselman, "Dual band-notched WiMAX/WLAN of a compact ultrawideband antenna with spectral and time-domains analysis for breast cancer detection," Progress In Electromagnetics Research C, Vol. 65, 163-173, 2016.
doi:10.2528/PIERC16041504

5. Salvador, S. M. and G. Vecchi, "Experimental tests of microwave breast cancer detection on phantoms," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 6, 1705-1712, 2009.
doi:10.1109/TAP.2009.2019901

6. Abbosh, A. M., H. K. Kan, and M. E. Bialkowski, "Compact ultra-wideband planar tapered slot antenna for use in a microwave imaging system," Microwave and Optical Technology Letters, Vol. 48, No. 11, 2212-2216, 2006.
doi:10.1002/mop.21906

7. Meaney, P. M., K. D. Paulsen, J. T. Chang, M. W. Fanning, and A. Hartov, "Nonactive antenna compensation for fixed-array microwave imaging," IEEE Transactions on Medical Imaging, Vol. 18, No. 6, 496-507, 1999.
doi:10.1109/42.781016

8. Fang, Q., "Computational methods for microwave medical imaging,", PhD Thesis, Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, NH, Dec. 2004.

9. Bond, E. J., X. Li, S. C. Hagness, and B. D. van Veen, "Microwave imaging via space-time beam forming for early detection of breast cancer," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 8, 1690-1705, 2003.
doi:10.1109/TAP.2003.815446

10. Bialkowski, M. E., W. C. Khor, and S. Crozier, "A planar microwave imaging system with step-frequency synthesized pulse using different calibration methods," Microwave and Optical Technology Letters, Vol. 48, No. 3, 511-516, 2006.
doi:10.1002/mop.21395

11. Rao Devana, V. N. K. and A. Maheswara Rao, "Compact UWB monopole antenna with quadruple band notched characteristics," International Journal of Electronics, Vol. 107, No. 2, 175-196, 2020.
doi:10.1080/00207217.2019.1636311

12. Rao Devana, V. N. K. and A. Maheswara Rao, "A novel fan shaped UWB antenna with band notch for WLAN using a simple parasitic slit," International Journal of Electronics Letters, Vol. 7, No. 3, 352-366, 2019.
doi:10.1080/21681724.2018.1519854

13. Rao Devana, V. N. K. and A. Maheswara Rao, "Design and analysis of dual band notched UWB antenna using a slot in feed and asymmetrical parasitic," IETE Journal of Research, 2020, doi: 10.1080/03772063.2020.1816226.

14. Afifi, A. I., A. B. Abdel-Rahman, A. Allam, and A. A. El-Hameed, "A compact ultra-wideband monopole antenna for breast cancer detection," 2016 IEEE 59th International Midwest Symposium on Circuits and Systems (MWSCAS), 1-4, IEEE, 2016.

15. Molaei, A., M. Kaboli, S. A. Mirtaheri, and M. S. Abrishamian, "Dielectric lens balanced antipodal Vivaldi antenna with low cross-polarisation for ultra-wideband applications," IET Microwaves, Antennas & Propagation, Vol. 8, No. 14, 1137-1142, 2014.
doi:10.1049/iet-map.2014.0207

16. Bakar, A. A., D. Ireland, A. M. Abbosh, and Y. Wang, "Experimental assessment of microwave diagnostic tool for ultra-wideband breast cancer detection," Progress In Electromagnetics Research M, Vol. 23, 109-121, 2012.
doi:10.2528/PIERM11122102

17. Latif, S., D. Flores-Tapia, S. Pistorius, and L. Shafai, "A planar ultrawideband elliptical monopole antenna with reflector for breast microwave imaging," Microwave and Optical Technology Letters, Vol. 56, No. 4, 808-813, 2014.
doi:10.1002/mop.28244

18. Jalilvand, M., X. Li, L. Zwirello, and T. Zwick, "Ultra wideband compact near-field imaging system for breast cancer detection," IET Microwaves, Antennas & Propagation, Vol. 9, No. 10, 1009-1014, 2015.
doi:10.1049/iet-map.2014.0735

19. Amdaouch, I., O. Aghzout, A. Naghar, A. V. Alejos, and F. J. Falcone, "Breast tumor detection system based on a compact UWB antenna design," Progress In Electromagnetics Research M, Vol. 64, 123-133, 2018.
doi:10.2528/PIERM17102404

20. Tarikul Islam, M., M. Samsuzzaman, M. N. Rahman, and M. T. Islam, "A compact slotted patch antenna for breast tumor detection," Microwave and Optical Technology Letters, Vol. 60, No. 7, 1600-1608, 2018.
doi:10.1002/mop.31215

21. Lasemi, Z. and Z. Atlasbaf, "Impact of fidelity factor on breast cancer detection," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 10, 1649-1653, 2020.
doi:10.1109/LAWP.2020.3011801

22. Rao Devana, V. N. K., B. S. L. Mounika, B. Yamini, G. Anitha, and G. Bala Sai Tarun, "Novel UWB monopole antenna with band notched characteristics," International Journal of Signal Processing, Image Processing and Pattern Recognition, Vol. 9, No. 5, 291-296, 2016.
doi:10.14257/ijsip.2016.9.5.26

23. Gupta, A. and M. L. Meena, "Design of semi circular floral shape directive UWB antenna for radar based microwave imaging," 2021 International Conference on Intelligence and Smart Systems (ICAIS), 2021, doi: 10.1109/ICAIS50930.2021.9395839.

24. Rao Devana, V. N. and A. M. Rao, "Design and parametric analysis of beveled UWB triple band rejection antenna," Progress In Electromagnetics Research M, Vol. 84, 95-106, 2019.
doi:10.2528/PIERM19071301

25. Zhang, H. and H. Li, "Flexible dual-polarized UWB antennas for breast tumor imaging," 2020 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO), 2020, doi: 10.1109/NEMO49486.2020.9343495.

26. Akazzim, Y., M. Kanjaa, O. El Mrabet, L. Jofre, and M. Essaaidi, "An UWB tapered slot vivaldi antenna (TSA) with improved characteristics," 2019 IEEE 19th Mediterranean Microwave Symposium (MMS), 2019, doi: 10.1109/MMS48040.2019.9157265.