Vol. 104
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2022-04-29
Design of Height-Adjustable Mechanically Reconfigurable Reflectarray
By
Progress In Electromagnetics Research Letters, Vol. 104, 1-6, 2022
Abstract
This paper presents a mechanically reconfigurable reflectarray with height adjustment for phase compensation. We designed, fabricated, and measured a prototype of 11×11 elements with microcontrollers to verify the feasibility of the proposed reflectarray. Simulated results show that the phase curve of the unit has good linearity and exhibit broadband characteristics. The maximum phase shift of the unit reaches about 200° at a center frequency of 16 GHz, which meets the requirement of a reflectarray with 1-bit phase quantization. Experimental results show that the gain of the proposed reflectarray is 17.7 dBi, with beam scanning range of ±50°. The proposed configurations can be used for a low-cost beam scanning antenna in wireless communication.
Citation
Weixiong Luo, Shixing Yu, Na Kou, Zhao Ding, and Zhengping Zhang, "Design of Height-Adjustable Mechanically Reconfigurable Reflectarray," Progress In Electromagnetics Research Letters, Vol. 104, 1-6, 2022.
doi:10.2528/PIERL22030801
References

1. Berry, D., R. Malech, and W. Kennedy, "The reflectarray antenna," IEEE Trans. Antennas Propag., Vol. 11, No. 6, 645-651, 1963.
doi:10.1109/TAP.1963.1138112

2. Li, Y. and A. Abbosh, "Reconfigurable reflectarray antenna using single-layer radiator controlled by PIN diodes," IET Microw. Antennas Propag., Vol. 9, 664-671, 2015.
doi:10.1049/iet-map.2014.0227

3. Han, J., L. Li, G. Liu, Z. Wu, and Y. Shi, "A wideband 1 bit 12×12 reconfigurable beam-scanning reflectarray: Design, fabrication, and measurement," IEEE Antennas Wirel. Propag. Lett., Vol. 18, No. 6, 1268-1272, 2019.
doi:10.1109/LAWP.2019.2914399

4. Costanzo, S., F. Venneri, A. Raffo, G. Di Massa, and P. Corsonello, "Radial-shaped single varactor-tuned phasing line for active reflectarrays," IEEE Trans. Antennas Propag., Vol. 64, No. 7, 3254-3259, 2016.
doi:10.1109/TAP.2016.2562673

5. Pozar, D., S. Targonski, and H. Syrigos, "Design of millimeter wave microstrip reflectarrays," IEEE Trans. Antennas Propag., Vol. 44, No. 2, 287-296, 1997.
doi:10.1109/8.560348

6. Cui, T., M. Qi, X. Wan, J. Zhao, and Q. Cheng, "Coding metamaterials, digital metamaterials and programmable metamaterials," Light-Sci. Appl., Vol. 3, e218, 2014.
doi:10.1038/lsa.2014.99

7. Xu, H., S. Xu, F. Yang, and M. Li, "Design and experiment of a dual-band 1 bit reconfigurable reflectarray antenna with independent large-angle beam scanning capability," IEEE Trans. Antennas Propag., Vol. 19, No. 11, 1896-1900, 2020.
doi:10.1109/LAWP.2020.3011578

8. Yang, X., S. Xu, F. Yang, M. Li, H. Fang, and L. Liu, "A mechanically reconfigurable reflectarray with slotted patches of tunable height," IEEE Trans. Antennas Propag., Vol. 17, No. 4, 555-558, 2018.
doi:10.1109/LAWP.2018.2802701

9. Yang, X., S. Xu, F. Yang, M. Li, and L. Liu, "A broadband high-efficiency reconfigurable reflectarray antenna using mechanically rotational elements," IEEE Trans. Antennas Propag., Vol. 65, No. 8, 3959-3966, 2017.
doi:10.1109/TAP.2017.2708079

10. Riel, M. and J. Laurin, "Design of an electronically beam scanning reflectarray using aperture-coupled elements," IEEE Trans. Antennas Propag., Vol. 55, No. 5, 1260-1266, 2007.
doi:10.1109/TAP.2007.895586

11. Costanzo, S., F. Venneri, A. Raffo, and G. Di Massa, "Dual-layer single-varactor driven reflectarray cell for broad-band beam-steering and frequency tunable applications," IEEE Access, Vol. 6, 71793-71800, 2018.
doi:10.1109/ACCESS.2018.2882093