1. Rajak, N., N. Chattoraj, and R. Mark, "Metamaterial cell inspired high gain multiband antenna for wireless applications," AEU - International Journal of Electronics and Communications, Vol. 109, 23-30, 2019.
doi:10.1016/j.aeue.2019.07.003
2. Si, L.-M., W. Zhu, and H.-J. Sun, "A compact, planar, and CPW-fed metamaterial-inspired dual-band antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 305-308, 2013.
doi:10.1109/LAWP.2013.2249037
3. Sharma, N. and S. S. Bhatia, "Metamaterial inspired fidget spinner-shaped antenna based on parasitic split ring resonator for multi-standard wireless applications," Journal of Electromagnetic Waves and Applications, Vol. 34, No. 10, 1471-1490, 2020.
doi:10.1080/09205071.2019.1654412
4. Murugeshwari, B., R. Samson Daniel, and S. Raghavan, "A compact dual band antenna based on metamaterial-inspired split ring structure and hexagonal complementary split-ring resonator for ISM/WiMAX/WLAN applications," Applied Physics A, Vol. 125, No. 9, 1-8, 2019.
doi:10.1007/s00339-019-2925-x
5. Hasan, M. M., M. R. I. Faruque, and M. T. Islam, "Dual band metamaterial antenna for LTE/bluetooth/WiMAX system," Scientific Reports, Vol. 8, No. 1, 1-17, 2018.
6. Sharma, S. K., M. A. Abdalla, and Z. Hu, "Miniaturisation of an electrically small metamaterial inspired antenna using additional conducting layer," IET Microwaves, Antennas & Propagation, Vol. 12, No. 8, 1444-1449, 2018.
doi:10.1049/iet-map.2017.0927
7. Rajeshkumar, V. and S. Raghavan, "A compact metamaterial inspired triple band antenna for reconfigurable WLAN/WiMAX applications," AEU - International Journal of Electronics and Communications, Vol. 69, No. 1, 274-280, 2015.
doi:10.1016/j.aeue.2014.09.012
8. Zhu, C., et al. "Electrically small metamaterial-inspired tri-band antenna with meta-mode," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1738-1741, 2015.
doi:10.1109/LAWP.2015.2421356
9. Sharma, S. K. and R. K. Chaudhary, "Dual-band metamaterial-inspired antenna for mobile applications," Microwave and Optical Technology Letters, Vol. 57, No. 6, 1444-1447, 2015.
doi:10.1002/mop.29113
10. Patel, R., et al. "Meandered low profile multiband antenna for wireless communication applications," Wireless Networks, Vol. 27, No. 1, 1-12, 2021.
doi:10.1007/s11276-020-02437-6
11. Patel, R., et al. "Low profile multiband meander antenna for LTE/WiMAX/WLAN and INSAT-C application," AEU - International Journal of Electronics and Communications, Vol. 102, 90-98, 2019.
doi:10.1016/j.aeue.2019.02.010
12. Girjashankar, P. R., T. Upadhyaya, and N. Daftary, "Design of dual wideband planar antenna for wireless applications," 2019 Third International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud)(I-SMAC), IEEE, 2019.
13. Subramanian, S., B. Sundarambal, and D. Nirmal, "Investigation on simulation-based specific absorption rate in ultra-wideband antenna for breast cancer detection," IEEE Sensors Journal, Vol. 18, No. 24, 10002-10009, 2018.
doi:10.1109/JSEN.2018.2875621
14. nst. of Appl. Phys., Italian Nat. Res. Council "Calculation of the dielectric properties of body tissues in the frequency range 10 Hz-100 GHz,", Florence, Italy, [Online], Available: http://niremf.ifac.cnr.it/tissprop.
15. Karthik, V. and T. Rama Rao, "Investigations on SAR and thermal effects of a body wearable microstrip antenna," Wireless Personal Communications, Vol. 96, No. 3, 3385-3401, 2017.
doi:10.1007/s11277-017-4059-9