Vol. 100
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2021-09-07
A Compact and Narrowband Displaced Substrate Integrated E-Plane Waveguide (SIEW) Junctions Filter
By
Progress In Electromagnetics Research Letters, Vol. 100, 19-25, 2021
Abstract
Substrate integrated E-plane waveguide (SIEW) was invented recently to design E-plane waveguide devices on printed circuit board, which cannot be achieved by using the conventional substrate integrated waveguide (SIW). This paper is the first time to present an E-plane displaced SIEW junctions bandpass filter. The proposed design is shorter than the recently published SIEW septa filter and has a smaller footprint than several other SIW filters. It is designed by mapping an equivalent E-plane waveguide filter to its SIEW implementation. A filter prototype is built and measured for validation.
Citation
Danyang Huang, Xuan Hui Wu, and Qun Zhang, "A Compact and Narrowband Displaced Substrate Integrated E-Plane Waveguide (SIEW) Junctions Filter," Progress In Electromagnetics Research Letters, Vol. 100, 19-25, 2021.
doi:10.2528/PIERL21060102
References

1. Hirokawa, J. and M. Ando, "Single-layer feed waveguide consisting of posts for plane TEM wave excitation in parallel plates," IEEE Transactions on Antennas and Propagation, Vol. 46, No. 5, 625-630, May 1998.
doi:10.1109/8.668903

2. Deslandes, D. and K. Wu, "Single-substrate integration technique of planar circuits and waveguide lters," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No. 2, 593-596, February 2003.
doi:10.1109/TMTT.2002.807820

3. Xu, F. and K. Wu, "Guided-wave and leakage characteristics of substrate integrated waveguide," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 1, 66-73, January 2005.
doi:10.1109/TMTT.2004.839303

4. Deslandes, D. and K. Wu, "Accurate modeling, wave mechanisms, and design considerations of a substrate integrated waveguide," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, No. 6, 2516-2526, June 2006.
doi:10.1109/TMTT.2006.875807

5. Chen, X.-P., K. Wu, and D. Drolet, "Substrate integrated waveguide lter with improved stopband performance for satellite ground terminal," IEEE Transactions on Microwave Theory and Techniques, Vol. 57, No. 3, 674-683, March 2009.
doi:10.1109/TMTT.2009.2013316

6. Xiao, Y., P. Shan, Y. Zhao, H. Sun, and F. Yang, "Design of a W-band GAAS-based SIW chip lter using higher order mode resonances," IEEE Microwave and Wireless Components Letters, Vol. 29, No. 2, 104-106, 2019.
doi:10.1109/LMWC.2018.2890265

7. Sun, L., H. Deng, Y. Xue, J. Zhu, and S. Xing, "Compact-balanced BPF and ltering crossover with intrinsic common-mode suppression using single-layered SIW cavity," IEEE Microwave and Wireless Components Letters, Vol. 30, No. 2, 144-147, 2020.
doi:10.1109/LMWC.2020.2965530

8. Liu, Q., D. Zhou, Y. Zhang, D. Zhang, and D. Lv, "Substrate integrated waveguide bandpass lters in box-like topology with bypass and direct couplings in diagonal cross-coupling path," IEEE Transactions on Microwave Theory and Techniques, Vol. 67, No. 3, 1014-1022, 2019.
doi:10.1109/TMTT.2018.2889450

9. Che, W., L. Xu, L. Geng, and D. Wang, "The propagation characteristics of double-layer substrate integrated waveguide (SIW) structure," 2006 Asia-Paci c Microwave Conference, 1392-1394, 2006.

10. Abdel-Wahab, W. M. and S. Safavi-Naeini, "Low loss double-layer substrate integrated waveguide- hybrid branch line coupler for mm-wave antenna arrays," 2011 IEEE International Symposium on Antennas and Propagation (APSURSI), 2074-2076, 2011.
doi:10.1109/APS.2011.5996917

11. Luo, P., W. He, Y. Zhang, H. Liu, E. Forsberg, and S. He, "Leaky-wave antenna with wide scanning range based on double-layer substrate integrated waveguide," IEEE Access, Vol. 8, 199899-199908, 2020.
doi:10.1109/ACCESS.2020.3035505

12. Huang, D., X. H. Wu, and Q. Zhang, "Concept of substrate integrated E-plane waveguide and waveguide filter," 2016 International Workshop on Antenna Technology (iWAT), 196-199, February 2016.
doi:10.1109/IWAT.2016.7434841

13. Hedin, M., D. Huang, X. H. Wu, and Q. Zhang, "Substrate integrated E-plane waveguide (SIEW) to design E-plane and dual polarized devices," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 3, 1844-1853, March 2019.
doi:10.1109/TAP.2018.2885459

14. Gu, Z., D. Huang, X. H. Wu, and Q. Zhang, "Substrate intergrated E-plane horn antenna," Proc. IEEE Antennas Propag. Soc. Int. Symp., 1555-1556, June 2016.

15. Gu, Z., X. H. Wu, and Q. Zhang, "Substrate-integrated E-plane waveguide horn antenna and antenna array," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 5, 2382-2391, May 2018.
doi:10.1109/TAP.2018.2814201

16. Akunuru, V. N. K. R. and X. H.Wu, "Excitation of circularly polarized wave in substrate integrated E-plane waveguide," Proc. IEEE Antennas Propag. Soc. Int. Symp., 1777-1778, 2019.

17. Kuhn, E., "Microwave bandpass lters consisting of rectangular waveguides with 1-dimensional offsets," Int. J. Circ. Theor. App., Vol. 6, No. 1, 13-29, January 1978.
doi:10.1002/cta.4490060104

18. Sargent, G. A., "Re ection coefficients of offset rectangular waveguides at 56 GHz," IEEE Transactions on Instrumentation and Measurement, Vol. 23, No. 3, 246-247, September 1974.
doi:10.1109/TIM.1974.4314273

19. Levy, R., "Re ection coefficient of unequal displaced rectangular waveguides (letters)," IEEE Transactions on Microwave Theory and Techniques, Vol. 24, No. 7, 480-483, July 1976.
doi:10.1109/TMTT.1976.1128879

20. Lerer, A. M., V. P. Lyapin, and G. P. Sinyavskii, "Displacements of rectangular waveguides," Radiophys. Quantum Electron., Vol. 25, 671-678, January 1982.
doi:10.1007/BF01034941

21. Hunter, J. D., "The displaced rectangular waveguide junction and its use as an adjustable reference reflection," IEEE Transactions on Microwave Theory and Techniques, Vol. 32, No. 4, 387-394, April 1984.
doi:10.1109/TMTT.1984.1132687

22. Matthaei, G. L., L. Young, and E. M. T. Jones, Microwave Filters, Impedance-matching Networks, and Coupling Structures, Artech House Books, Artech House Microwave Library, 1980.