1. Munk, B. A., Frequency Selective Surface: Theory and Design, Wiley, 2000.
doi:10.1002/0471723770
2. Chen, H., X. Hou, and L. Deng, "Design of frequency selective surfaces radome for a planar slotted waveguide antenna," IEEE Antennas Wireless Propag. Lett., Vol. 8, 1231-1233, 2009.
doi:10.1109/LAWP.2009.2035646
3. Song, X., Z. Yan, T. Zhang, C. Yang, and R. Lian, "Triband frequency selective surface as subreflector in Ku-, K-, and Ka-bands," IEEE Antennas Wireless Propag. Lett., Vol. 15, 1869-1872, 2016.
doi:10.1109/LAWP.2016.2542185
4. Sivasamy, R., M. Kanagasabai, S. Baisakhiya, R. Natarajan, J. K. Pakkathillam, and S. K. Palaniswamy, "A novel shield for GSM 1800 MHz band using frequency selective surface," Progress In Electromagnetics Research Letters, Vol. 38, 193-199, 2013.
doi:10.2528/PIERL13022206
5. Zhang, K. Z., W. Jiang, J. Y. Ren, and S. X. Gong, "An annular-ring miniaturized stopband frequency selective surface with ultra-large angle of incidence," Progress In Electromagnetics Research M, Vol. 65, 19-27, 2018.
doi:10.2528/PIERM18011014
6. Wu, R., H. Zhang, Z. M. Yang, T. Zhong, and Y. F. Lin, "Compact stable frequency selective surface using novel Y-type element," Progress In Electromagnetics Research Letters, Vol. 57, 85-90, 2015.
doi:10.2528/PIERL15050705
7. Shaik, V. and K. Shambavi, "Design of dodecagon unit cell shape based three layered frequency selective surfaces for X band reflection," Progress In Electromagnetics Research M, Vol. 75, 103-111, 2018.
doi:10.2528/PIERM18070207
8. Xue, J. Y., S. X. Gong, P. F. Zhang, W. Wang, and F. F. Zhang, "A new miniaturized fractal frequency selective surface with excellent angular stability," Progress In Electromagnetics Research Letters, Vol. 13, 131-138, 2010.
doi:10.2528/PIERL10010804
9. Wang, H., M. Yan, S. Qu, L. Zheng, and J. Wang, "Design of a self-complementary frequency selective surface with multi-band polarization separation characteristic," IEEE Access, Vol. 7, 36788-36799, 2019.
doi:10.1109/ACCESS.2019.2905416
10. Rashid, A. K. and Z. Shen, "A novel band-reject frequency selective surface with pseudo-elliptic response," IEEE Trans. Antennas Propag., Vol. 58, No. 4, 1220-1226, 2010.
doi:10.1109/TAP.2010.2041167
11. Li, B. and Z. Shen, "Three-dimensional bandpass frequency-selective structures with multiple transmission zeros," IEEE Trans. Microw. Theory Techn., Vol. 61, No. 10, 3578-3589, 2013.
doi:10.1109/TMTT.2013.2279776
12. Li, B. and Z. Shen, "Dual-band bandpass frequency-selective structures with arbitrary band ratios," IEEE Trans. Antennas Propag., Vol. 62, No. 11, 5504-5512, 2014.
doi:10.1109/TAP.2014.2349526
13. Al-Sheikh, A. and Z. Shen, "Design of wideband bandstop frequency selective structures using stacked parallel strip line arrays," IEEE Trans. Antennas Propag., Vol. 64, No. 8, 3401-3409, 2016.
doi:10.1109/TAP.2016.2570247
14. Tao, K., B. Li, Y. Tang, M. Zhang, and Y. Bo, "Analysis and implementation of 3D bandpass frequency selective structure with high frequency selectivity," Electron. Lett., Vol. 53, No. 22, 324-326, 2017.
doi:10.1049/el.2016.4469
15. Omar, A. A. and Z. Shen, "Double-sided parallel-strip line resonator for dual-polarized 3-D frequency-selective structure and absorber," IEEE Trans. Microw. Theory Techn., Vol. 65, No. 10, 3744-3752, 2017.
doi:10.1109/TMTT.2017.2700301
16. Omar, A. A. and Z. Shen, "Thin bandstop frequency-selective structures based on loop resonator," IEEE Trans. Microw. Theory Techn., Vol. 65, No. 7, 2298-2309, 2017.
doi:10.1109/TMTT.2017.2651812
17. Li, B., X. Huang, L. Zhu, Y. X. Zhang, Y. M. Tang, W. J. Lu, and Y. M. Bo, "Bandpass frequency selective structure with improved out-of-band rejection using stacked single-layer slotlines," IEEE Trans. Antennas Propag., Vol. 66, No. 11, 6003-6014, 2018.
doi:10.1109/TAP.2018.2866529
18. Rashid, A. K., Z. Shen, and B. Li, "An elliptical bandpass frequency selective structure based on microstrip lines," IEEE Trans. Antennas Propag., Vol. 60, No. 10, 4661-4669, 2012.
doi:10.1109/TAP.2012.2207355
19. Pelletti, C., G. Bianconi, R. Mittra, and Z. Shen, "Frequency selective surface with wideband quasi-elliptic bandpass response," Electron. Lett., Vol. 49, No. 17, 1052-1053, 2013.
doi:10.1049/el.2013.2007
20. Ferreira, D., I. Cuiñas, R. F. S. Caldeirinha, and T. R. Fernandes, "3-D mechanically tunable square slot FSS," IEEE Trans. Antennas Propag., Vol. 65, No. 1, 242-250, 2017.
doi:10.1109/TAP.2016.2631131
21. Zhang, B. and H. Zirath, "Metallic 3-D printed rectangular waveguides for millimeter-wave applications," IEEE Trans. Compon. Packag. Manuf. Technol., Vol. 6, No. 5, 796-804, 2016.
doi:10.1109/TCPMT.2016.2550483
22. Nayeri, P., et al. "3D printed dielectric reflectarrays: Low-cost high-gain antennas at sub-millimeter waves," IEEE Trans. Antennas Propag., Vol. 62, No. 4, 2000-2008, 2014.
doi:10.1109/TAP.2014.2303195
23. Wu, T. K., Ed., Frequency Selective Surface and Grid Array, Wiley, 1995.
24. Craven, G. F. and C. K. Mok, "The design of evanescent mode waveguide bandpass filters for a prescribed insertion loss characteristic," IEEE Trans. Microw. Theory Tech., Vol. 19, No. 3, 295-308, 1971.
doi:10.1109/TMTT.1971.1127503
25. Dong, Y. D., T. Yang, and T. Itoh, "Substrate integrated waveguide loaded by complementary split-ring resonators and its applications to miniaturized waveguide filters," IEEE Trans. Microw. Theory Tech., Vol. 57, No. 9, 2211-2223, 2009.
doi:10.1109/TMTT.2009.2027156
26. Sarabandi, K. and N. Behdad, "A frequency selective surface with miniaturized elements," IEEE Trans. Antennas Propag., Vol. 55, No. 5, 1239-1245, 2007.
doi:10.1109/TAP.2007.895567
27. Lee, C. K. and R. J. Langley, "Equivalent-circuit models for frequency selective surfaces at oblique angles of incidence," IEE Proc. H - Microw., Antennas Propag., Vol. 132, No. 6, 395-399, 1985.
doi:10.1049/ip-h-2.1985.0070
28. Pozar, D. M., Microwave Engineering, Wiley, 2009.