Vol. 103
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2020-06-23
Design of Compact Dual Circularly Polarized Concentric Ring Series-Fed Quasi-Lumped Antenna Array
By
Progress In Electromagnetics Research C, Vol. 103, 111-121, 2020
Abstract
A differentially compact dual circularly polarized (CP) concentric ring traveling wave-fed quasi-lumped resonator (QLR) array working at 5.8 GHz is presented. The array consists of seven series QLRs, each with an interdigital finger capacitor, connected by a parallel narrow-strip inductor. The CP was obtained by organizing the radiating QLR over a concentric ring-fed microstrip. The QLR was fed with a current of the same magnitude and some phase delay at each element. The dual-port feeding permitted the selection of the traveling wave direction and, consequently, the mode of CP. The measured bandwidth was 5.76-5.8 GHz at port 1. Meanwhile, the bandwidth was 5.75-5.77 GHz at port 2. The measured peak gain was 5.9 dBi at port 1 and 6.4 dBi at port 2. The cross-polarization was 19 dB lower than the co-polarization at port 1, which is a characteristic of right-hand circular polarization (RHCP). The cross-polarization was 14 dB higher than the co-polarization at port 2, which is a characteristic of left-hand circular polarization (LHCP). The size of each radiating element was 5.8 × 5.6 mm2, and the array was 40 × 40 mm2. These features and its compact size make the proposed array antenna a good candidate to be used in wireless systems.
Citation
Yazeed Mohammad A. Qasaymeh, Abdullah Almuhaisen, and Khaled Issa, "Design of Compact Dual Circularly Polarized Concentric Ring Series-Fed Quasi-Lumped Antenna Array," Progress In Electromagnetics Research C, Vol. 103, 111-121, 2020.
doi:10.2528/PIERC19122201
References

1. Masa-Campos, J. L. and F. Gonzalez-Fernandez, "Dual linear/circular polarized planar antenna with low profile double-layer polarizer of 45 tilted metallic strips for WiMAX applications," Progress In Electromagnetics Research, Vol. 98, 221-231, 2009.
doi:10.2528/PIER09092406

2. Yang, Y., J. Guo, Y. Cia, and G. Zhou, "The design of dual circularly polarized series-fed array," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 1, 574-579, 2019.
doi:10.1109/TAP.2018.2879775

3. Wu, G.-L., W. Mu, G. Zhao, and Y.-C. Jiao, "A novel design of dual circularly polarized antenna fed by L-strip," Progress In Electromagnetics Research, Vol. 79, 39-46, 2008.
doi:10.2528/PIER07092001

4. Liu, H., Y. Liu, and S. Gong, "Design of a compact dual-polarised slot antenna with enhanced gain," IET Microwaves, Antennas & Propagation, Vol. 11, No. 6, 892-897, 2017.
doi:10.1049/iet-map.2016.0843

5. Jin, H., K. Chin, W. Che, C. Chang, H. Li, and Q. Xue, "Differential-fed patch antenna arrays with low cross polarization and wide bandwidths," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 1069-1072, 2014.

6. Li, B., Y. Yin, W. Hu, Y. Ding, and Y. Zhao, "Wideband dual-polarized patch antenna with low cross polarization and high isolation," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 427-430, 2012.

7. Zhang, Y. P. and J. J. Wang, "Theory and analysis of differentially-driven microstrip antennas," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 4, 1092-1099, 2006.
doi:10.1109/TAP.2006.872597

8. Amiri, N. and K. Forooraghi, "Dual-band and dual-polarized microstrip array antenna for GSM900/DCS1800 MHz base stations," IEEE Antennas and Propagation Society International Symposium, 4439-4442, NM, 2006.
doi:10.1109/APS.2006.1711619

9. Karimkashi, S. and G. Zhang, "A dual-polarized series-fed microstrip antenna array with very high polarization purity for weather measurements," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 10, 5315-5319, 2013.
doi:10.1109/TAP.2013.2273813

10. Vallecchi, A. and B. Gentili, "Design of dual-polarized series-fed microstrip arrays with low losses and high polarization purity," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 5, 1791-1798, 2005.
doi:10.1109/TAP.2005.846732

11. Chen, S. J., C. Fumeaux, Y. Monnai, and W. Withayachumnankul, "Dual circularly polarized series-fed microstrip patch array with coplanar proximity coupling," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 1500-1503, 2017.
doi:10.1109/LAWP.2016.2647227

12. Shen, Y., S. Zhou, Y. Huang, and T. Chio, "A compact dual circularly polarized microstrip patch array with interlaced sequentially rotated feed," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 11, 4933-4939, 2016.
doi:10.1109/TAP.2016.2600747

13. Zhang, G., Q. Lin, L. Nie, J. Yu, and Y. Fan, "Wideband dual-polarization patch antenna array with parallel strip line balun feeding," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1499-1501, 2016.
doi:10.1109/LAWP.2016.2514538

14. Cui, Y., X. Gao, and R. Li, "A broadband differentially fed dual-polarized planar antenna," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 6, 3231-3234, 2017.
doi:10.1109/TAP.2017.2694884

15. Sun, K., D. Yang, Y. Chen, and S. Liu, "A broadband commonly fed dual-polarized antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 5, 747-750, 2018.
doi:10.1109/LAWP.2018.2813428

16. Tang, Z., J. Liu, and Y. Yin, "Enhanced cross-polarization discrimination of wideband differentially fed dual-polarized antenna via a shorting loop," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 8, 1454-1458, 2018.
doi:10.1109/LAWP.2018.2849221

17. White, C. R. and G. M. Rebeiz, "A differential dual-polarized cavity-backed microstrip patch antenna with independent frequency tuning," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 11, 3490-3498, 2010.
doi:10.1109/TAP.2010.2071364

18. Zhang, F., F. Zhu, and S. Gau, "Differential-fed ultra-wideband slot-loaded patch antenna with dual orthogonal polarisation," Electronics Letters, Vol. 49, No. 25, 1591-1593, 2013.
doi:10.1049/el.2013.2607

19. Xue, Q., S. Liao, and J. Xu, "A differentially-driven dual-polarized magneto-electric dipole antenna," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 1, 425-430, 2013.
doi:10.1109/TAP.2012.2214998

20. Xue, Q., S. Liao, and J. Xu, "A differentially-driven dual-polarized magneto-electric dipole antenna," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 1, 425-430, 2013.
doi:10.1109/TAP.2012.2214998

21. Luo, Y. and Q. Chu, "Oriental crown-shaped differentially fed dual-polarized multidipole antenna," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 11, 4678-4685, 2015.
doi:10.1109/TAP.2015.2478909

22. Luo, Q., S. Gao, M. Sobhy, J. Sumantyo, J. Li, G. Wei, J. Xu, and C. Wu, "Dual circularly polarized equilateral triangular patch array," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 6, 2255-2262, 2016.
doi:10.1109/TAP.2016.2551260

23. Bahl, I. J., Lumped Elements for RF and Microwave Circuits, Artech House, 2003.

24. Huang, F., B. Avenhaus, and M. Lancaster, "Lumped-element switchable superconducting filters," IEE Proceedings — Microwaves, Antennas and Propagation, Vol. 146, No. 3, 229-233, 1999.
doi:10.1049/ip-map:19990357

25. Bogatin, E., "Design rules for microstrip capacitance," IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol. 11, No. 3, 253-259, 1988.
doi:10.1109/33.16649

26. Su, H. T., M. J. Lancaster, F. Huang, and F. Wellhofer, "Electrically tunable superconducting quasilumped element resonator using thin-film ferroelectrics," Microwave and Optical Technology Letters, Vol. 24, 155-158, 2000.
doi:10.1002/(SICI)1098-2760(20000205)24:3<155::AID-MOP3>3.0.CO;2-U

27. Chaudhuri, S., R. S. Kshetrimayum, R. K. Sonkar, and M. Mishra, "Dual circularly polarised travelling wave slot antenna array," Electronics Letters, Vol. 55, No. 20, 1071-1073, 2019.
doi:10.1049/el.2019.1972

28. Chen, S. G., C. Fumeaux, M. Monnai, and W. Withayachumnankul, "Dual circularly polarized series-fed microstrip patch array with coplanar proximity coupling," IEEE Antennas and Wireless Propagation Letters, Vol. 16, No. 10, 1500-1503, 2017.
doi:10.1109/LAWP.2016.2647227

29. Min, C. and C. E. Free, "Analysis of traveling-wave-fed patch arrays," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 3, 664-670, 2009.
doi:10.1109/TAP.2009.2013434