Vol. 99
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2020-01-25
Synthesis of Chained-Elliptic Function Waveguide Bandpass Filter with High Rejection
By
Progress In Electromagnetics Research C, Vol. 99, 61-75, 2020
Abstract
This paper describes the synthesis of a bandpass filter to achieve high selectivity and rejection properties using a new class of filter functions called chained-elliptic function filters. Chained-elliptic filters have higher selectivity than Chebyshev function filters and have the property of sensitivity to manufacturing tolerance reduction in chained-function filters. The proposed design has high selectivity and reduced sensitivity, enabling easier and faster filter fabrication. The characteristic polynomials of chained-elliptic function filters are derived through chaining elliptic filtering function and extracted to form a coupling matrix of the bandpass filter. The novel transfer polynomials are given in detail, and a thorough investigation of the filter characteristics is performed. A theoretical comparison with Chebyshev and elliptic filters of the same order is performed to ascertain the demonstrated advantages of this proposed filter class. A high frequency narrow-band fourth-order chained-elliptic function waveguide filter centred at 28 GHz with a fractional bandwidth of 1.61% is fabricated to validate the proposed design concept. A good match among the measured, simulated and ideal filter responses is shown where the overall responses between measurement and simulation have a difference of approximately 2% which is within the acceptable limit. The chained-elliptic function concept will be useful in designing low-cost high-performance microwave filters with various fabrication technologies for millimetre-wave applications.
Citation
Guan Shen Ng, Sovuthy Cheab, Peng Wen Wong, and Socheatra Soeung, "Synthesis of Chained-Elliptic Function Waveguide Bandpass Filter with High Rejection," Progress In Electromagnetics Research C, Vol. 99, 61-75, 2020.
doi:10.2528/PIERC19112002
References

1. Chrisostomidis, C. E. and S. Lucyszyn, "On the theory of chained-function filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 10, 3142-3151, Oct. 2005.
doi:10.1109/TMTT.2005.855358

2. Guglielmi, M. and G. Connor, "Chained function filters," IEEE Microw. Guided Wave Lett., Vol. 7, No. 12, 390-392, Dec. 1997.
doi:10.1109/75.645181

3. Chrisostomidis, C. E. and S. Lucyszyn, "Seed function combination selection for chained function filters," IET Microwaves, Antennas and Propagation, Vol. 4, 799-807, Jun. 2010.
doi:10.1049/iet-map.2009.0508

4. Chrisostomidis, C. E., M. Guglielmi, P. Young, and S. Lucyszyn, "Application of chained functions to low-cost microwave band-pass filters using standard PCB etching techniques," 2000 30th European Microwave Conference, Oct. 2000.

5. Lim, Y. P., Y. L. Toh, S. Cheab, G. S. Ng, and P. W. Wong, "Chained-function waveguide filter for 5G and beyond," TENCON 2018 --- 2018 IEEE Region 10 Conference, 2018.

6. Lim, Y. P., Y. L. Toh, S. Cheab, S. Lucyszyn, and P. W. Wong, "Coupling matrix synthesis and design of a chained-function waveguide filter," 2018 Asia-Pacific Microwave Conference (APMC), 2018.

7. Perenic, G., N. Stamenkovic, N. Stojanovic, and N. Denic, "Chained-function filter synthesis based on the modified Jacobi polynomials," Radioengineering, Vol. 27, No. 4, 1112-1118, 2018.
doi:10.13164/re.2018.1112

8. Stojanovic, N., N. Stamenkovic, and I. Krstic, "Chained-function filter synthesis based on the Legendre polynomials," Circuits, Systems, and Signal Processing, Vol. 37, No. 5, 2001-2020, Aug. 2017.
doi:10.1007/s00034-017-0651-1

9. Zverev, A. I., Handbook of Filter Synthesis, Wiley, New York, 1967.

10. Cameron, R. J., C. M. Kudsia, and R. R. Mansour, Microwave Filters for Communication Systems: Fundamentals, Design, and Applications, 2nd Ed., Wiley, New York, Apr. 2018.
doi:10.1002/9781119292371

11. Hunter, I., Theory and Design of Microwave Filters, (IET Electromagnetic Waves Series), 370, 2006.

12. Xu, J., "Compact quasi-elliptic response wideband bandpass filter with four transmission zeros," IEEE Microwave and Wireless Components Letters, Vol. 25, No. 3, 169-171, 2015.
doi:10.1109/LMWC.2015.2390571

13. Chen, S., L.-F. Shi, G.-X. Liu, and J.-H. Xun, "An alternate circuit for narrow-bandpass elliptic microstrip filter design," IEEE Microwave and Wireless Components Letters, Vol. 27, No. 7, 624-626, 2017.
doi:10.1109/LMWC.2017.2711528

14. Chen, C.-J., "A coupled-line coupling structure for the design of quasi-elliptic bandpass filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 66, No. 4, 1921-1925, 2018.
doi:10.1109/TMTT.2017.2783378

15. Zhang, F., J. Li, P. Zhao, G. Huang, and J. Xu, "A wideband microstrip elliptic bandpass filter with flexibly tunable bandwidth," 2018 International Conference on Microwave and Millimeter Wave Technology (ICMMT), 2018.

16. Dimopoulos, H. G., "Optimal use of some classical approximations in filter design," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 54, No. 9, 780-784, 2007.
doi:10.1109/TCSII.2007.900345

17. Wang, L. and L. Jin, "A quasi-elliptic microstrip bandpass filter using modified anti-parallel coupled-line," Progress In Electromagnetics Research, Vol. 138, 245-253, 2013.

18. Kuo, J.-T., S.-C. Tang, and S.-H. Lin, "Quasi-elliptic function bandpass filter with upper stopband extension and high rejection level using cross-coupled stepped-impedance resonators ," Progress In Electromagnetics Research, Vol. 114, 395-405, 2011.
doi:10.2528/PIER11011002

19. Poularikas, A., The Handbook of Formulas and Tables for Signal Processing, CRC Press, Boca Raton, Fla., 1999.

20. Chisostomidis, C. E., "Chained function filters --- Theory and applications,", Ph.D. dissertation, Univ. Surrey, Surrey, U.K., 2003.

21. Cameron, R. J., "Advanced coupling matrix synthesis techniques for microwave filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No. 1, 1-10, Jan. 2003.
doi:10.1109/TMTT.2002.806937

22. Cameron, R., "General coupling matrix synthesis methods for Chebyshev filtering functions," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 4, 433-442, Apr. 1999.
doi:10.1109/22.754877

23. Kocbach, J. and K. Folgero, "Design procedure for waveguide filters with cross-couplings," IEEE MTT-S Int Microwave Symp. Dig., Vol. 3, 1449-1452, Jun. 2002.

24. Huang, Q. and Z. Wu, "A compact six-order folded-waveguide resonator filter," 2018 IEEE MTT-S International Wireless Symposium (IWS), 2018.

25. Kojima, H., M. Nakahori, K. Matsutani, K. Kuroda, and K. Onaka, "A compact 28GHz bandpass filter using quartz folded waveguide," 2018 IEEE MTT-S International Microwave Symposium (IMS), 2018.

26. Matsutani, K., et al. "Miniaturized quartz waveguide filter using double-folded structure," 2019 IEEE MTT-S International Microwave Symposium (IMS), 2019.