Vol. 86
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2019-08-29
Dual-Band Circular Polarized Slot Array Antenna in Substrate Integrated Waveguide Using Two Propagation Modes for Communication Satellites Transceivers
By
Progress In Electromagnetics Research Letters, Vol. 86, 137-143, 2019
Abstract
A novel dual-band circularly-polarized slot array antenna aimed at LEO satellites communications where up-link and down-link operate at different frequencies is introduced. By using higher order modes, the slots can be placed at points where current distributions are null for the fundamental mode. According to this idea, at the receiver frequency band the slots are placed to be excited by mode TE10 currents distribution, and at the transmitting band slots are forced to radiate according to mode TE20 currents distribution. A matching load termination is used to generate the required travelling wave to obtain the circular polarization, introducing low dissipation losses. Additionally, in this investigation an antenna feeder is also designed. Both the feeder and the slot antenna array are designed using Substrate Integrated Waveguide (SIW). The use of SIW makes easier the design of the transitions from the array to the microstrip input lines and the grounded-coplanar termination as well, relaxing fabrication constraints and tolerance.
Citation
Iván Herrero-Sebastián, and César Benavente-Peces, "Dual-Band Circular Polarized Slot Array Antenna in Substrate Integrated Waveguide Using Two Propagation Modes for Communication Satellites Transceivers," Progress In Electromagnetics Research Letters, Vol. 86, 137-143, 2019.
doi:10.2528/PIERL19070104
References

1. Nagpal, L. and K. Samdani, "Project loon: Innovating the connectivity worldwide," IEEE RTEICT, May 2017.

2. Barnett, R. J., "OneWeb non-geostationary satellite system," FCC, 2013.

3. Chou, H. and Y. Chen, "Phased array antenna modules with dual ports for independent transmitting and receiving beam-forming networks," IEEE APEMC, 2017.

4. Srivastava, A., R. Kumar, A. Buswas, and M. Akhtar, "Dual-band c-shaped circular slot SIW antenna," IEEE International Conference on iAIM, 2017.

5. De, R., B. B. Chowdhury, and M. Bhowmik, "A novel design of dual frequency SIW slot antenna," International Conference on Signal Processing and Integrated Networks, June 2016.

6. Yang, S., A. E. Fathy, and S. Suleiman, "Synthesis of a travelling wave slotted substrate integrated waveguide array with dual-circular polarization," IEEE International Microwave Symposium Digest, 2013.

7. Kulkarni, P. B. and D. V. D.Weide, "An X-band circularly polarized substrate integrated waveguide slot antenna," IEEE International Symposium on Antennas and Propagation, June 2016.

8. Yang, W., Q. Meng, W. Che, L. Gu, and Q. Xue, "Low-profile wideband dual-circularly polarized metasurface antenna array with large beamwidth," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 9, 1613-1616, 2018.
doi:10.1109/LAWP.2018.2857625

9. Nouri, K., T. Bouazza, B. Boubakar, D. Mehdi, B. Kada, and S. Seghier, "Design of substrate integrated waveguide multi-band slots array antennas," International Journal of Information and Electronics Engineering, Vol. 6, No. 4, 221-225, July 2016.

10. Mohan, M. P., A. Alphones, and F. Karim, "Triple band Siw cavity backed slot antenna," IEEE Asia Pacific Microwave Conference, 2017.

11. Wu, C. T. M. and T. Itoh, "An X-band dual-mode antenna using substrate integrated waveguide cavity for simultaneous satellite and terrestrial links," IEEE Asia-Pacific Pacific Microwave Conference, 2014.

12. Martinez-Ros, A. J., M. Bozzi, and M. Pasian, "Double sided SIW leaky-wave antenna with increased directivity in the E-plane," IEEE Trans. on Antennas and Propagation, Vol. 66, No. 6, 3130-3135, 2018.
doi:10.1109/TAP.2018.2811843

13. Du, M., J. Xu, Y. Dong, and X. Ding, "LTCC SIW-vertical fed-dipole array fed by a microstrip network with tapered microstrip-to-SIW transitions for wideband millimeter-wave applications," IEEE Antennas and Wireless Prop. Letters, Vol. 16, 1953-1956, 2017.
doi:10.1109/LAWP.2017.2690325

14. Cheng, Y. J., K. Wu, and W. Hong, "Substrate integrated waveguide (SIW) broadband compensating phase shifter," IEEE International Microwave Symposium Digest, July 2009.

15. Stanculovic, S., "Theoretical synthesis and experimental measurements for slotted waveguide feeding systems for 2.45GHz industrial microwave heating installations,", December 2006.