Vol. 79
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-03-16
Aluminum-Based Engineered Plasmonic Nanostructures for the Enhanced Refractive Index and Thickness Sensing in Ultraviolet-Visible-Near Infrared Spectral Range
By
Progress In Electromagnetics Research M, Vol. 79, 167-174, 2019
Abstract
We engineer very low aspect ratio Aluminum (Al) based periodic plasmonic nanostructures with period ≈ resonance wavelength for enhanced refractive index and thickness sensing, which offer to access complete ultraviolet-visible-near infrared spectral range for SPR sensors. Al-based periodic nanostructures on top of a thin homogeneous Al metal coated on a BK-7 glass substrate were designed by systematic variation of geometrical parameters using Rigorous Coupled Wave Analysis and finite elements full wave solver, while, taking into account applicable fabrication constraints. The reason of adding a thin layer of homogeneous Al metal between the nanostructure and glass substrate was to convert the signature of Surface Plasmons (SPs) from transmission dips to transmission peaks, using ±1st order diffraction mode. The shift in SP mode excited on the nanostructure-analyte interface was used to measure the variation in refractive index, and the number of waveguide modes with the increase in the thickness of the analyte was used to capture the variation in thickness of the analyte. The proposed nanostructures of period 400 nm and an aspect ratio of 0.1 offered a sensitivity of 400 nm/RIU and full width at half maximum of 18 nm resulting in a figure of merit of 22. These plasmonic nanostructures have potential to be used as refractive index and thickness sensor due to a high figure of merit, high localization of the field, and very low aspect ratio that is needed to maintain laminar flow of analyte.
Citation
Pankaj Arora, and Harsh Vardhan Awasthi, "Aluminum-Based Engineered Plasmonic Nanostructures for the Enhanced Refractive Index and Thickness Sensing in Ultraviolet-Visible-Near Infrared Spectral Range," Progress In Electromagnetics Research M, Vol. 79, 167-174, 2019.
doi:10.2528/PIERM19012401
References

1. Valsecchi, C. and A. G. Brolo, "Periodic metallic nanostructures as plasmonic chemical sensors," Langmuir, Vol. 29, No. 19, 5638-5649, 2013.
doi:10.1021/la400085r

2. Chung, T., S. Y. Lee, E. Y. Song, H. Chun, and B. Lee, "Plasmonic nanostructures for nano-scale bio-sensing," Sensors, Vol. 11, No. 11, 10907-10929, 2011.
doi:10.3390/s111110907

3. Špačková, B., P. Wrobel, M. Bocková, and J. Homola, "Optical biosensors based on plasmonic nanostructures: A review," Proc. IEEE, Vol. 104, No. 12, 2380-2408, 2016.
doi:10.1109/JPROC.2016.2624340

4. Arora, P. and A. Krishnan, "Imaging the engineered polarization states of surface plasmon polaritons at visible wavelengths," J. Light. Technol., Vol. 32, No. 24, 4816-4822, 2014.
doi:10.1109/JLT.2014.2366053

5. Roh, S., T. Chung, and B. Lee, "Overview of the characteristics of micro- and nano-structured surface plasmon resonance sensors," Sensors, Vol. 11, No. 2, 1565-1588, 2011.
doi:10.3390/s110201565

6. Homola, J., S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: Review," Sensors Actuators B Chem., Vol. 54, 3-15, 1999.
doi:10.1016/S0925-4005(98)00321-9

7. Stewart, M. E., C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, "Nanostructured plasmonic sensors," Chem. Rev., Vol. 108, No. 2, 494-521, 2008.
doi:10.1021/cr068126n

8. González-Campuzano, R., J. M. Saniger, and D. Mendoza, "Plasmonic resonances in hybrid systems of aluminum nanostructured arrays and few-layer graphene within the UV-IR spectral range," Nanotechnology, Vol. 28, No. 465704, 1-9, 2017.

9. Lecarme, O., Q. Sun, K. Ueno, and H. Misawa, "Robust and versatile light absorption at near-infrared wavelengths by plasmonic aluminum nanorods," ACS Photonics, Vol. 1, No. 6, 538-546, 2014.
doi:10.1021/ph500096q

10. Su, W., G. Zheng, and X. Li, "Design of a highly sensitive surface plasmon resonance sensor using aluminum-based diffraction gratings," Opt. Commun., Vol. 285, 4603-4607, 2012.
doi:10.1016/j.optcom.2012.07.026

11. Martin, J. and J. Plain, "Fabrication of aluminum nanostructures for plasmonics," J. Phys. D. Appl. Phys., Vol. 48, No. 184002, 1-17, 2015.

12. Li, W., Y. Qiu, L. Zhang, L. Jiang, Z. Zhou, H. Chen, and J. Zhou, "Aluminum nanopyramid array with tunable ultraviolet-visible-infrared wavelength plasmon resonances for rapid detection of carbohydrate antigen 199," Biosens. Bioelectron., Vol. 79, 500-507, 2016.
doi:10.1016/j.bios.2015.12.038

13. Chowdhury, M. H., K. Ray, S. K. Gray, J. Pond, and J. R. Lakowicz, "Aluminum nanoparticles as substrates for metal-enhanced fluorescence in the ultraviolet for the label-free detection of biomolecules," Anal. Chem., Vol. 81, No. 4, 1397-1403, 2009.
doi:10.1021/ac802118s

14. Zhang, X., J. Zhao, A. V. Whitney, J. W. Elam, and R. P. Van Duyne, "Ultrastable substrates for surface-enhanced Raman spectroscopy: Al2O3 overlayers fabricated by atomic layer deposition yield improved anthrax biomarker detection," J. Am. Chem. Soc., Vol. 128, No. 31, 10304-10309, 2006.
doi:10.1021/ja0638760

15. Tong, J., F. Suo, J. Ma, L. Y. M. Tobing, L. Qian, and D. H. Zhang, "Surface plasmon enhanced infrared photodetection," Optoelectron. Adv., Vol. 2, No. 1, 1-10, 2019.

16. Lu, H., X. Liu, D. Mao, and G. Wang, "Plasmonic nanosensor based on Fano resonance in waveguide-coupled resonators," Opt. Lett., Vol. 37, No. 18, 3780-3782, 2012.
doi:10.1364/OL.37.003780

17. Lu, H., S. Dai, Z. Yue, Y. Fan, H. Cheng, J. Di, D. Mao, E. Li, T. Mei, and J. Zhao, "Sb2Te03 topological insulator: Surface plasmon resonance and application in refractive index monitoring," Nanoscale, 2019.

18. Lu, H., Y. Fan, S. Dai, and D. Mao, "Coupling-induced spectral splitting for plasmonic sensing with the ultra-high figure of merit," Chinese Phys. B, Vol. 27, No. 11, 117302, 2018.
doi:10.1088/1674-1056/27/11/117302

19. Moharam, M. G., E. B. Grann, and D. A. Pommet, "Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings," J. Opt. Soc. Am. A, Vol. 12, No. 5, 1068-1076, 1995.
doi:10.1364/JOSAA.12.001068

20. Arora, P. and A. Krishnan, "Fourier plane colorimetric sensing using broadband imaging of surface plasmons and application to biosensing," J. Appl. Phys., Vol. 118, No. 23, 2015.
doi:10.1063/1.4937567

21. Lee, K. L., C. C. Chang, M. L. You, M. Y. Pan, and P. K. Wei, "Enhancing surface sensing sensitivity of metallic nanostructures using blue-shifted surface plasmon mode and fano resonance," Sci. Rep., Vol. 8, No. 1, 1-12, 2018.
doi:10.1038/s41598-017-17765-5

22. Arora, P. and A. Krishnan, "On-chip label-free plasmonic-based imaging microscopy for microfluidics," J. Phys. Commun., Vol. 2, No. 085012, 1-9, 2018.

23. Sun, X., X. Shu, and C. Chen, "Grating surface plasmon resonance sensor: Angular sensitivity, metal oxidization effect of Al-based device in optimal structure," Appl. Opt., Vol. 54, No. 6, 1548-1554, 2015.
doi:10.1364/AO.54.001548

24. Jha, R. and A. K. Sharma, "High-performance sensor based on surface plasmon resonance with chalcogenide prism and aluminum for detection in infrared," Opt. Lett., Vol. 34, No. 6, 749-751, 2009.
doi:10.1364/OL.34.000749

25. Arora, P. and A. Krishnan, "Analysis of transmission characteristics and multiple resonances in plasmonic gratings coated with homogeneous dielectrics," Progress In Electromagnetics Research Symposium Proceedings, 927-931, Taipei, March 25–28, 2013.

26. Frisbie, S. P., A. Krishnan, X. Xu, L. G. de Peralta, S. A. Nikishin, M.W. Holtz, and A. A. Bernussi, "Optical reflectivity of asymmetric dielectric-metal-dielectric planar structures," J. Light. Technol., Vol. 27, No. 15, 2964-2969, 2009.
doi:10.1109/JLT.2008.2009886