Vol. 75
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-10-24
Study on Silicon-Based Conformal Microstrip Angular Log-Periodic Meander Line Traveling Wave Tube
By
Progress In Electromagnetics Research M, Vol. 75, 29-37, 2018
Abstract
Angular log-periodic meander line (ALPML) traveling wave tube (TWT) is one kind of low voltage miniature TWT. In order to decrease high frequency loss, avoid charge accumulation and enhance coupling impedance, the conformal microstrip ALPML TWT based on silicon substrate is proposed in this paper, which means that the projections of silicon supporting structure and metallic microstrip meander line are same in the top view. The microfabrication technology DRIE can be used to fabricate this structure. Compared with the conventional microstrip ALPML TWT, the coupling impedance of conformal microstrip ALPML TWT increases 50%. The particle-in-cell (PIC) simulation results reveal that the output power of conformal microstrip ALPML TWT can reach 220 W at 35 GHz, while the efficiency is 20%. The 3-dB bandwidth reaches 14 GHz in the frequency range between 28 GHz and 41 GHz when the operating voltage and radial sheet beam current are 3600 V and 0.3 A, respectively.
Citation
Tenglong He, Zhan-Liang Wang, Xinyi Li, Hexin Wang, Wei Shao, Hanwen Tian, Ling-Na Yue, Hua-Rong Gong, Zhaoyun Duan, Yan-Yu Wei, and Yu-Bin Gong, "Study on Silicon-Based Conformal Microstrip Angular Log-Periodic Meander Line Traveling Wave Tube," Progress In Electromagnetics Research M, Vol. 75, 29-37, 2018.
doi:10.2528/PIERM18090703
References

1. Rappaport, T. S., S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G. N. Wong, J. K. Schulz, M. Samimi, and F. Gutierrez, "Millimeter wave mobile communications for 5G cellular: It will work!," IEEE Access, Vol. 1, 335-349, May 2013, DOI:10.1109/ACCESS.2013.2260813.
doi:10.1109/ACCESS.2013.2260813

2. Nurmela, V., A. Karttunen, and A. Roivainen, "Mobile and wireless communications enablers for the twenty-twenty information society,", Deliverable D1. 4, V1. 0, ICT-317669, METIS project, 2015.

3. Tehrani, M., M. Uysal, and H. Yanikomeroglu, "Device-to-device communication in 5G cellular networks: Challenges, solutions, and future directions," IEEE Commun. Mag., Vol. 52, No. 5, 86-92, May 2014, DOI: 10.1109/MCOM.2014.6815897.
doi:10.1109/MCOM.2014.6815897

4. Andrews, J. G., S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. K. Soong, and J. C. Zhang, "What will 5G be?," IEEE J. Sel. Areas Commun., Vol. 32, No. 6, 1065-1082, Jun. 2014, DOI: 10.1109/JSAC.2014. 2328098.
doi:10.1109/JSAC.2014.2328098

5. Shen, F., Y. Wei, H. Yin, Y. Gong, X. Xu, S. Wang, W. Wang, and J. Feng, "A novel V-shaped microstrip meander-line slow-wave structure for W-band MMPM," IEEE Trans. Plasma Sci., Vol. 40, No. 2, 463-469, Feb. 2012, DOI: 10.1109/TPS.2011.2175252.
doi:10.1109/TPS.2011.2175252

6. Larsen, P. B., D. K. Abe, S. J. Cooke, B. Levush, T. M. Antonsen, Jr., and R. E. Myers, "Characterization of a Ka-band Sheet-Beam structure coupled-cavity slow-wave," IEEE Trans. Plasma Sci., Vol. 38, No. 6, 1244-1254, Jun. 2010, DOI: 10.1109/TPS.2010.2043690.
doi:10.1109/TPS.2010.2043690

7. Datta, S. K., V. B. Naidu, S. U. Reddy, L. Kumar, and B. N. Basu, "Analytical exploration of ultrawideband helix slow-wave structures using multidispersion phase velocity taper," IEEE Trans. Plasma Sci., Vol. 37, No. 2, 311-316, Feb. 2009, DOI: 10.1109/TPS.2008.2010548.
doi:10.1109/TPS.2008.2010548

8. Savel’yev, V. S. and G. I. Kushcenko, "Experimental investigation of a TWT with a radial electron stream," Radio Eng. Electron. Phys., Vol. 15, No. 12, 2267-2272, 1970.

9. Wang, S., Y. Gong, Y. Hou, Z. Wang, Y. Wei, Z. Duan, and J. Cai, "Study of a log-periodic slow wave structure for ka-band radial sheet beam traveling wave tube," IEEE Trans. Plasma Sci., Vol. 41, No. 8, 2277-2282, Aug. 2013, DOI: 10.1109/TPS.2013.2271639.
doi:10.1109/TPS.2013.2271639

10. Li, X., Y. Xu, S. Wang, Z. Wang, X. Shi, Z. Duan, Y. Wei, J. Feng, and Y. Gong, "Study on phase velocity tapered microstrip angular log-periodic meander line travelling wave tube," IET Microwaves, Antennas Propag., Vol. 10, No. 8, 902-907, 2016, DOI: 10.1049/iet-map.2015.0520.
doi:10.1049/iet-map.2015.0520

11. Li, X., Z. Wang, T. He, H. Gong, Z. Duan, Y. Wei, and Y. Gong, "Study on radial sheet beam electron optical system for miniature low-voltage traveling-wave tube," IEEE Trans. Electron Devices, Vol. 64, No. 8, 3405-3412, Aug. 2017, DOI: 10.1109/TED.2017.2711616.
doi:10.1109/TED.2017.2711616

12. Ding, C., Y. Wei, Q. Li, L. Zhang, G. Guo, and Y. Gong, "A dielectric-embedded microstrip meander line slow-wave structure for miniaturized traveling wave tube," Journal of Electromagnetic Waves and Applications, Vol. 31, No. 17, 1938-1946, Nov. 2017, DOI: 10.1080/09205071.2017.1358109.

13. Sengele, S., H. Jiang, J. H. Booske, C. L. Kory, D. W. van der Weide, and R. L. Ives, "Microfabrication and characterization of a selectively metallized w-band meander-line TWT circuit," IEEE Trans. Electron Devices, Vol. 56, No. 5, 730-737, May 2009, DOI: 10.1109/TED.2009.2015416.
doi:10.1109/TED.2009.2015416

14. Sun, W. and C. A. Balanis, "MFIE analysis and design of ridged waveguides," IEEE Trans. Microw. Theory Tech., Vol. 41, No. 11, 1965-1971, Nov. 1993, DOI: 10.1109/22.273423.

15. CST "CST STUDIO SUITE help documentation,", 2014.

16. Wang, S., Y. Gong, Z. Wang, Y. Wei, Z. Duan, and J. Feng, "Study of the symmetrical microstrip angular log-periodic meander-line traveling-wave tube," IEEE Trans. Plasma Sci., Vol. 44, No. 9, 1787-1793, Sept. 2016, Doi: 10.1109/TPS.2016.2598614.
doi:10.1109/TPS.2016.2598614

17. Wang, S., Y. Gong, Y.Wei, and Z. Duan, "Study on the radial-sheet-beam electron optical system," IEEE Trans. Plasma Sci., Vol. 40, No. 12, 3442-3448, Dec. 2012, DOI: 10.1109/TPS.2012.2218623.
doi:10.1109/TPS.2012.2218623