Vol. 79
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2018-11-08
Miniaturized and Folded Multisection Quadrature Hybrid for UWB Applications
By
Progress In Electromagnetics Research Letters, Vol. 79, 129-133, 2018
Abstract
This letter presents the development of a miniaturized and folded multisection quadrature hybrid for ultra-wideband (UWB) applications. For a size reduction, Stages 1, 2 and 3 are placed on the top of PCB, and Stages 5, 7 and 7 are placed on the bottom of PCB. The transition between top and bottom layers uses via transitions. Stage 4 is proposed with vertical via transitions and microstrip lines on the top and bottom sides of PCB, which is helpful for bandwidth increment and size reduction. The overall size of the proposed UWB hybrid is only 21 mm by 14 mm, and a size reduction of 50% is achieved compared with a planar multisection one. Performance comparisons are also implemented and discussed compared with a planar one.
Citation
Zhi Kuang Cai, Bo Zhou, Peiqi Chen, Lingxuan Huang, Ninglin Wang, and Xuan Ni, "Miniaturized and Folded Multisection Quadrature Hybrid for UWB Applications," Progress In Electromagnetics Research Letters, Vol. 79, 129-133, 2018.
doi:10.2528/PIERL18082305
References

1. Gruszczynski, S. and K. Wincza, "Design of high-performance broadband multisection symmetrical 3-dB directional couplers," Microwave Opt. Technol. Lett., Vol. 50, 636-638, 2008.
doi:10.1002/mop.23169

2. Wincza, K. and S. Gruszczynski, "Three-section symmetrical 3-dB directional coupler in multilayer microstrip technology designed with the use of multi-technology compensation," Microwave Opt. Technol. Lett., Vol. 51, 902-906, 2009.
doi:10.1002/mop.24193

3. Abbosh, A. M. and M. E. Bialkowski, "Design of compact directional couplers for UWB applications," IEEE Trans. Microwave Theory Tech., Vol. 55, 189-194, 2007.
doi:10.1109/TMTT.2006.889150

4. Abbosh, A. M. and M. E. Bialkowski, "Design of ultra wideband 3 dB quadrature microstrip/slot coupler," Microwave Opt. Technol. Lett., Vol. 49, 2101-2103, 2007.
doi:10.1002/mop.22674

5. Dai, Y. S., Y. L. Lu, Q. S. Luo, B. Z. Zhan, X. Wang, and Y. B. Jiang, "A microminiature 3 dB multilayer double-octave hybrid coupler using LTCC," IEEE Asia-Pacific Microwave Conference, 2005.

6. Li, X., M. Cai, W. Shi, et al. "A compact wideband coupler for single-antenna microwave radar," 2017 IEEE Proceeding of Sixth Asia-Pacific Conference on Antennas and Propagation (APCAP), 1-3, 2017.

7. Tang, C. W., M. G. Chen, Y. S. Lin, and J. W. Wu, "Broadband microstrip branch-line coupler with defected ground structure," IET Electronics Lett., Vol. 42, 1458-1460, 2006.
doi:10.1049/el:20063025

8. Jain, S., A. Agrawal, M. Johnson, et al. "A 0.55-to-0.9 GHz 2.7 dB NF full-duplex hybrid-coupler circulator with 56 MHz 40 dB TX SI suppression," IEEE Proceeding of International Solid-State Circuits Conference-(ISSCC), 400-402, 2018.

9. Yoon, H. J. and B. W. Min, "Two section wideband 90˚ hybrid coupler using parallel-coupled three-line," IEEE Microwave and Wireless Components Letters, Vol. 27, No. 6, 548-550, 2017.
doi:10.1109/LMWC.2017.2701304

10. Hitzler, M., J. Iberle, W. Mayer, et al. "Wideband low-cost hybrid coupler for mm-wave frequencies," IEEE proceeding of International Microwave Symposium (IMS), 630-633, 2017.

11. Kumar, K. V. P. and S. S. Karthikeyan, "Highly compact wideband double-section rat-race hybrid with harmonic suppression using series and shunt stepped impedance transmission lines," International Journal of Microwave and Wireless Technologies, Vol. 9, No. 4, 797-803, 2017.
doi:10.1017/S1759078716000982

12. Hosseinzadeh, N. and J. F. Buckwalter, "A compact, 37% fractional bandwidth millimeter-wave phase shifter using a wideband lange coupler for 60-GHz and E-band systems," IEEE Proceeding of Compound Semiconductor Integrated Circuit Symposium (CSICS), 1-4, 2017.

13. Lo, Y.-C., B.-K. Chung, and E. H. Lim, "A semi-elliptical wideband directional coupler," Progress In Electromagnetics Research C, Vol. 79, 139-148, 2017.
doi:10.2528/PIERC17082205

14. Kumar, S., C. Tannous, and T. Danshin, "A multisection broadband impedance transforming branch-line hybrid," IEEE Trans. Microwave Theory Tech., Vol. 43, 2517-2523, 1995.
doi:10.1109/22.473172

15. AXIEM, AWR Corporation, El Segundo, CA.