Vol. 79
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2018-10-17
Ferrofluid Actuation Based Frequency Reconfigurable Patch Antenna
By
Progress In Electromagnetics Research Letters, Vol. 79, 71-77, 2018
Abstract
This work describes the fabrication and characterization of a frequency reconfigurable patch antenna using ferrofluid actuation. The reconfiguration is based on a variation of dielectric constant of the substrate. For this, the substrate is modified by placing channels in it filled with ferrofluid and isopropanol-water solution. The relative position of ferrofluid along the channels is controlled by an external magnetic field which results in a relocatable spatial difference in the dielectric constant value. The targeted reconfigurability with stable radiation characteristics at the accessible frequencies is validated through antenna reflection loss and radiation pattern measurements. Additionally, actuation speed of the fluid immerged in the polar mixture is measured by sequential image analysis.
Citation
Rocktotpal Baruah, and Nidhi S. Bhattacharyya, "Ferrofluid Actuation Based Frequency Reconfigurable Patch Antenna," Progress In Electromagnetics Research Letters, Vol. 79, 71-77, 2018.
doi:10.2528/PIERL18072502
References

1. Costantine, J., Y. Tawk, S. E. Barbin, and C. G. Christodoulou, "Reconfigurable antennas: Design and applications," Proceedings of the IEEE, Vol. 103, 424-437, 2015.
doi:10.1109/JPROC.2015.2396000

2. Christodoulou, C. G., Y. Tawk, S. A. Lane, and S. R. Erwin, "Reconfigurable antennas for wireless and space applications," Proceedings of the IEEE, Vol. 100, 2250-2261, 2012.
doi:10.1109/JPROC.2012.2188249

3. Yang, S., C. Zhang, H. K. Pan, A. E. Fathy, and V. K. Nair, "Frequency-reconfigurable antennas for multiradio wireless platforms," IEEE Microwave Magazine, Vol. 10, 66-83, 2009.
doi:10.1109/MMM.2008.930677

4. Bhattacharjee, T., H. Jiang, and N. Behdad, "A fluidically tunable, dual-band patch antenna with closely spaced bands of operation," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 118-121, 2016.
doi:10.1109/LAWP.2015.2432575

5. Murray, C. and R. R. Franklin, "Independently tunable annular slot antenna resonant frequencies using fluids," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 1449-1452, 2014.
doi:10.1109/LAWP.2014.2341232

6. Huff, G. H., D. L. Rolando, P. Walters, and J. McDonald, "A frequency reconfigurable dielectric resonator antenna using colloidal dispersions," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 288-290, 2010.
doi:10.1109/LAWP.2010.2046613

7. Dey, A. and G. Mumcu, "Microfluidically controlled frequency-tunable monopole antenna for high-power applications," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 226-229, 2016.
doi:10.1109/LAWP.2015.2438863

8. Kim, D., R. G. Pierce, R. Henderson, S. J. Doo, K. Yoo, and J.-B. Lee, "Liquid metal actuation-based reversible frequency tunable monopole antenna," Applied Physics Letters, Vol. 105, 234104, 2014.
doi:10.1063/1.4903882

9. Wang, M., C. Trlica, M. R. Khan, M. D. Dickey, and J. J. Adams, "A reconfigurable liquid metal antenna driven by electrochemically controlled capillarity," Journal of Applied Physics, Vol. 117, 194901, 2015.
doi:10.1063/1.4919605

10. Morales, D., Morales, N. A. Stoute, Z. Yu, D. E. Aspnes, and M. D. Dickey, "Liquid gallium and the eutectic gallium indium (EGaIn) alloy: Dielectric functions from 1.24 to 3.1 eV by electrochemical reduction of surface oxides," Applied Physics Letters, Vol. 109, 091905, 2016.
doi:10.1063/1.4961910

11. Khan, M. R., G. J. Hayes, J.-H. So, G. Lazzi, and M. D. Dickey, "A frequency shifting liquid metal antenna with pressure responsiveness," Applied Physics Letters, Vol. 99, 013501, 2011.
doi:10.1063/1.3603961

12. King, A. J., J. F. Patrick, N. R. Sottos, S. R. White, G. H. Huff, and J. T. Bernhard, "Microfluidically switched frequency-reconfigurable slot antennas," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 828-831, 2013.
doi:10.1109/LAWP.2013.2270940

13. Morishita, A. M., C. K. Y. Kitamura, A. T. Ohta, and W. A. Shiroma, "A liquid-metal monopole array with tunable frequency, gain, and beam steering," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 1388-1391, 2013.
doi:10.1109/LAWP.2013.2286544

14. Rodrigo, D., L. Jofre, and B. A. Cetiner, "Circular beam-steering reconfigurable antenna with liquid metal parasitics," IEEE Transactions on Antennas and Propagation, Vol. 60, 1796-1802, 2012.
doi:10.1109/TAP.2012.2186235

15. Balanis, C. A., Antenna Theory: Analysis and Design, 3rd edition (With CD), Wiley India Pvt. Limited, 2009.

16. Garg, R., Microstrip Antenna Design Handbook, Artech House, 2001.

17. Devi, M. and D. Mohanta, "Rheological properties of iron oxide based ferrofluids," AIP Conference Proceedings, Vol. 1147, 495-501, 2009.
doi:10.1063/1.3183480

18. Furumura, K. and S. Matsunaga, "Process for producing a ferrofluid, and a composition thereof,", ed: Google Patents, 1984.