Vol. 163
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2018-08-02
Development of Multilayer Rectangular Coils for Multiple-Receiver Multiple-Frequency Wireless Power Transfer
By
Progress In Electromagnetics Research, Vol. 163, 15-24, 2018
Abstract
In this paper, three viable multilayer rectangular coil structures, namely the spiral, concentrated and uneven compound types, are proposed and analyzed. In the multiple-receiver multiple-frequency wireless power transfer system, the compact coil topologies are particularly preferable and should fulfill the required performance of magnetic field with the compact size design. In order to minimize the variation of magnetic fields that can be picked up by multiple receivers, the uneven compound type is newly derived by combining the merits of both the spiral and concentrated types. Because of providing more uniform magnetic flux density distribution, the uneven compound type can achieve better tolerance of misalignment. Without any misalignment, its transmission efficiency can reach up to 92%. Moreover, their electric potential distributions are analyzed to provide guidance for the maximum input current at the desired operation frequency. Both finite element analysis and experimental results are given to verify the validity of the proposed coil structures.
Citation
Chaoqiang Jiang, Kwok-Tong Chau, Wei Han, and Wei Liu, "Development of Multilayer Rectangular Coils for Multiple-Receiver Multiple-Frequency Wireless Power Transfer," Progress In Electromagnetics Research, Vol. 163, 15-24, 2018.
doi:10.2528/PIER18060206
References

1. Covic, G. A. and J. T. Boys, "Inductive power transfer," Proceedings of the IEEE, Vol. 101, No. 6, 1276-1289, Jun. 2013.
doi:10.1109/JPROC.2013.2244536

2. Robichaud, A., M. Boudreault, and D. Deslandes, "Theoretical analysis of resonant wireless power transmission links composed of electrically small loops," Progress In Electromagnetics Research, Vol. 143, 485-501, 2013.
doi:10.2528/PIER13102306

3. Jang, B.-J., S. Lee, and H. Yoon, "HF-band wireless power transfer system: Concept, issues, and design," Progress In Electromagnetics Research, Vol. 124, 211-231, 2012.
doi:10.2528/PIER11120511

4. Park, S. I., "Ehancement of wireless power transmission into biological tissues using a high surface impedance ground plane," Progress In Electromagnetics Research, Vol. 135, 123-136, 2013.
doi:10.2528/PIER12110902

5. Jiang, C., K. T. Chau, C. Liu, and C. H. T. Lee, "An overview of resonant circuits for wireless power transfer ," Energies, Vol. 10, No. 7, 894:1–20, Jun. 2017.

6. Zhang, Z., H. Pang, A. Georgiadis, and C. Cecati, "Wireless power transfer --- An overview," IEEE Transactions on Industrial Electronics, 2018, doi: 10.1109/TIE.2018.2835378.

7. Mi, C. C., G. Buja, S. Y. Choi, and C. T. Rim, "Modern advances in wireless power transfer systems for roadway powered electric vehicles," IEEE Transactions on Industrial Electronics, Vol. 63, No. 10, 6533-6545, Oct. 2016.
doi:10.1109/TIE.2016.2574993

8. Zhang, Z. and K. T. Chau, "Homogeneous wireless power transfer for move-and-charge," IEEE Transactions on Power Electronics, Vol. 30, No. 11, 6213-6220, Nov. 2015.
doi:10.1109/TPEL.2015.2414453

9. Poon, A. S. Y., "A general solution to wireless power transfer between two circular loop," Progress In Electromagnetics Research, Vol. 148, 171-182, 2014.
doi:10.2528/PIER14071201

10. Kim, J., W.-S. Choi, and J. Jeong, "Loop switching technique for wireless power transfer using magnetic resonance coupling," Progress In Electromagnetics Research, Vol. 138, 197-209, 2013.
doi:10.2528/PIER13012118

11. Jiang, C., K. T. Chau, C. Liu, and W. Han, "Design and analysis of wireless switched reluctance motor drives," IEEE Transactions on Industrial Electronics, 2018, doi: 10.1109/TIE.2018.2829684.

12. Han, W., K. T. Chau, Z. Zhang, and C. Jiang, "Single-source multiple-coil homogeneous induction heating," IEEE Transactions on Magnetics, Vol. 53, No. 11-7207706:1-6, Nov. 2017.

13. Jiang, C., K. T. Chau, Y. Y. Leung, C. Liu, C. H. T. Lee, and W. Han, "Design and analysis of wireless ballastless fluorescent lighting," IEEE Transactions on Industrial Electronics, 2017, doi: 10.1109/TIE.2017.2784345.

14. Li, C. J. and H. Ling, "Investigation of wireless power transfer using planarized, capacitor-loaded coupled loops," Progress In Electromagnetics Research, Vol. 148, 223-231, 2014.
doi:10.2528/PIER14071705

15. Fan, Y., L. Li, S. Yu, C. Zhu, and C.-H. Liang, "Experimental study of efficient wireless power transfer system integrating with highly sub-wavelength metamaterials," Progress In Electromagnetics Research, Vol. 141, 769-784, 2013.
doi:10.2528/PIER13061711

16. El Badawe, M. and O. M. Ramah, "Efficient metasurface rectenna for electromagnetic wireless power transfer and energy harvesting," Progress In Electromagnetics Research, Vol. 161, 35-40, 2018.

17. Zhang, Z., K. T. Chau, C. Liu, C. Qiu, and T. W. Ching, "A positioning-tolerant wireless charging system for roadway-powered electric vehicles," Journal of Applied Physics, Vol. 117, 17B520:1-4, 2015.
doi:10.1063/1.4915337

18. Chau, K.-T., C. Jiang, W. Han, and C. H. T. Lee, "State-of-the-art electromagnetics research in electric and hybrid vehicles," Progress In Electromagnetics Research, Vol. 159, 139-157, 2017.
doi:10.2528/PIER17090407

19. Zhang, Z., K. T. Chau, C. Qiu, and C. Liu, "Energy encryption for wireless power transfer," IEEE Transactions on Power Electronics, Vol. 30, No. 9, 5237-5246, Sep. 2015.
doi:10.1109/TPEL.2014.2363686

20. Ahn, D. and S. Hong, "A study on magnetic field repeater in wireless power transfer," IEEE Transactions on Industrial Electronics, Vol. 60, No. 1, 360-371, Jan. 2013.
doi:10.1109/TIE.2012.2188254

21. Huang, S., Z. Li, Y. Li, X. Yuan, and S. Cheng, "A comparative study between novel and conventional four-resonator coil structures in wireless power transfe," IEEE Transactions on Magnetics, Vol. 50, No. 11, 1-4, Nov. 2014.

22. Jiang, C., K. T. Chau, C. Liu, and W. Han, "Wireless DC motor drives with selectability and controllability," Energies, Vol. 10, No. 1, 49:1-15, Jan. 2017.

23. Jiang, C., K. T. Chau, T. W. Ching, C. Liu, and W. Han, "Time-division multiplexing wireless power transfer for separately excited DC motor drives," IEEE Transactions on Magnetics, Vol. 53, No. 11, 1-5, Nov. 2017.
doi:10.1109/TMAG.2017.2695656

24. Qiu, C., K. T. Chau, C. Liu, T. W. Ching, and Z. Zhang, "Modular inductive power transmission system for high misalignment electric vehicle application," Journal of Applied Physics, Vol. 117, No. 17, 17B528:1-4, Apr. 2015.

25. Casanova, J. J., Z. N. Low, and J. Lin, "A loosely coupled planar wireless power system for multiple receivers ," IEEE Transactions on Industrial Electronics, Vol. 56, No. 8, 3060-3068, Aug. 2009.
doi:10.1109/TIE.2009.2023633

26. Qiu, C., K. T. Chau, C. Liu, W. Li, and F. Lin, "Quantitative comparison of dynamic flux distribution of magnetic couplers for roadway electric vehicle wireless charging system," Journal of Applied Physics, Vol. 115, No. 17, 17A334:1-3, May 2014.